Abstract
Threshold private set intersection enables Alice and Bob who hold sets \(S_{\mathsf {A}}\) and \(S_{\mathsf {B}}\) of size n to compute the intersection \(S_{\mathsf {A}} \cap S_{\mathsf {B}} \) if the sets do not differ by more than some threshold parameter \(t\). In this work, we investigate the communication complexity of this problem and we establish the first upper and lower bounds. We show that any protocol has to have a communication complexity of \(\varOmega (t)\). We show that an almost matching upper bound of \(\tilde{\mathcal {O}}(t)\) can be obtained via fully homomorphic encryption. We present a computationally more efficient protocol based on weaker assumptions, namely additively homomorphic encryption, with a communication complexity of \(\tilde{\mathcal {O}}(t ^2)\). For applications like biometric authentication, where a given fingerprint has to have a large intersection with a fingerprint from a database, our protocols may result in significant communication savings.
Prior to this work, all previous protocols had a communication complexity of \(\varOmega (n)\). Our protocols are the first ones with communication complexities that mainly depend on the threshold parameter \(t\) and only logarithmically on the set size n.
S. Ghosh and M. Simkin—Supported by the European Unions’s Horizon 2020 research and innovation program under grant agreement No 669255 (MPCPRO) and under grant agreement No 731583 (SODA) and the Independent Research Fund Denmark project BETHE.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
A rational function is the fraction of two polynomials. See Sect. 2.1 for details.
- 2.
See [MTZ03] for details on rational function interpolation over a field.
- 3.
The lemma we are referring to here is Lemma 2 in the paper of Kissner and Song.
- 4.
For the case of the Paillier cryptosystem this is strictly speaking not the case, since not every element from the message space has an inverse. However, finding an element that does not have an inverse is as hard as breaking the security of the cryptosystem. Therefore, we can treat the message space as if it was an actual field.
- 5.
See Theorem 3 in their work.
- 6.
separating the numerator and denominator from a given rational function is easy here, because we obtain the coefficients of both separately during the interpolation step.
References
Applebaum, B., Damgård, I., Ishai, Y., Nielsen, M., Zichron, L.: Secure arithmetic computation with constant computational overhead. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10401, pp. 223–254. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63688-7_8
Babai, L., Frankl, P., Simon, J.: Complexity classes in communication complexity theory (preliminary version). In: 27th FOCS, pp. 337–347. IEEE Computer Society Press, October 1986
Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic encryption without bootstrapping. In: Goldwasser, S. (ed.) ITCS 2012, pp. 309–325. ACM, January 2012
Blum, M., Kannan, S.: Designing programs that check their work. In: 21st ACM STOC, pp. 86–97. ACM Press, May 1989
Ben-Or, M., Tiwari, P.: A deterministic algorithm for sparse multivariate polynominal interpolation (extended abstract). In: 20th ACM STOC, pp. 301–309. ACM Press, May 1988
Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from (standard) LWE. In: Ostrovsky, R. (ed.) 52nd FOCS, pp. 97–106. IEEE Computer Society Press, October 2011
Brakerski, Z., Vaikuntanathan, V.: Fully homomorphic encryption from ring-LWE and security for key dependent messages. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 505–524. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22792-9_29
Bar-Yossef, Z., Jayram, T.S., Kumar, R., Sivakumar, D.: An information statistics approach to data stream and communication complexity. J. Comput. Syst. Sci. 68(4), 702–732 (2004)
Canetti, R.: Universally composable security: a new paradigm for cryptographic protocols. In: 42nd FOCS, pp. 136–145. IEEE Computer Society Press, October 2001
Cramer, R., Damgård, I., Nielsen, J.B.: Secure Multiparty Computation and Secret Sharing. Cambridge University Press, Cambridge (2015)
De Cristofaro, E., Gasti, P., Tsudik, G.: Fast and private computation of cardinality of set intersection and union. In: Pieprzyk, J., Sadeghi, A.-R., Manulis, M. (eds.) CANS 2012. LNCS, vol. 7712, pp. 218–231. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-35404-5_17
Chen, H., Laine, K., Rindal, P.: Fast private set intersection from homomorphic encryption. In: Thuraisingham, B.M., Evans, D., Malkin, T., Xu, D. (eds.) ACM CCS 17, pp. 1243–1255. ACM Press, October/November 2017
Dong, C., Chen, L., Wen, Z.: When private set intersection meets big data: an efficient and scalable protocol. In: Sadeghi, A.-R., Gligor, V.D., Yung, M. (eds.) ACM CCS 2013, pp. 789–800. ACM Press, November 2013
Debnath, S.K., Dutta, R.: Secure and efficient private set intersection cardinality using bloom filter. In: Lopez, J., Mitchell, C.J. (eds.) ISC 2015. LNCS, vol. 9290, pp. 209–226. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23318-5_12
Damgård, I., Jurik, M.: A generalisation, a simpli.cation and some applications of Paillier’s probabilistic public-key system. In: Kim, K. (ed.) PKC 2001. LNCS, vol. 1992, pp. 119–136. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44586-2_9
De Cristofaro, E., Tsudik, G.: Practical private set intersection protocols with linear complexity. In: Sion, R. (ed.) FC 2010. LNCS, vol. 6052, pp. 143–159. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14577-3_13
Egert, R., Fischlin, M., Gens, D., Jacob, S., Senker, M., Tillmanns, J.: Privately computing set-union and set-intersection cardinality via bloom filters. In: Foo, E., Stebila, D. (eds.) ACISP 2015. LNCS, vol. 9144, pp. 413–430. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19962-7_24
Freedman, M.J., Nissim, K., Pinkas, B.: Efficient private matching and set intersection. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 1–19. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24676-3_1
Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Mitzenmacher, M. (ed.) 41st ACM STOC, pp. 169–178. ACM Press, May/June 2009
Grigorescu, E., Jung, K., Rubinfeld, R.: A local decision test for sparse polynomials. Inf. Process. Lett. 110(20), 898–901 (2010)
Ghosh, S., Nilges, T.: An algebraic approach to maliciously secure private set intersection. Cryptology ePrint Archive, Report 2017/1064 (2017). https://eprint.iacr.org/2017/1064
Ghosh, S., Nielsen, J.B., Nilges, T.: Maliciously secure oblivious linear function evaluation with constant overhead. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10624, pp. 629–659. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70694-8_22
Hallgren, P.A., Orlandi, C., Sabelfeld, A.: PrivatePool: privacy-preserving ridesharing. In: 30th IEEE Computer Security Foundations Symposium, CSF 2017, Santa Barbara, CA, USA, 21–25 August 2017, pp. 276–291 (2017)
Hazay, C., Venkitasubramaniam, M.: Scalable multi-party private set-intersection. In: Fehr, S. (ed.) PKC 2017. LNCS, vol. 10174, pp. 175–203. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54365-8_8
Hohenberger, S., Weis, S.A.: Honest-verifier private disjointness testing without random oracles. In: Danezis, G., Golle, P. (eds.) PET 2006. LNCS, vol. 4258, pp. 277–294. Springer, Heidelberg (2006). https://doi.org/10.1007/11957454_16
Ishai, Y., Prabhakaran, M., Sahai, A.: Secure arithmetic computation with no honest majority. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 294–314. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00457-5_18
Kolesnikov, V., Kumaresan, R., Rosulek, M., Trieu, N.: Efficient batched oblivious PRF with applications to private set intersection. In: Weippl, E.R., Katzenbeisser, S., Kruegel, C., Myers, A.C., Halevi, S. (eds.) ACM CCS 2016, pp. 818–829. ACM Press, October 2016
Kiss, Á., Liu, J., Schneider, T., Asokan, N., Pinkas, B.: Private set intersection for unequal set sizes with mobile applications. Proc. Priv. Enhancing Technol. 2017(4), 177–197 (2017)
Kolesnikov, V., Matania, N., Pinkas, B., Rosulek, M., Trieu, N.: Practical multi-party private set intersection from symmetric-key techniques. In: Thuraisingham, B.M., Evans, D., Malkin, T., Xu, D. (eds.) ACM CCS 2017, pp. 1257–1272. ACM Press, October/November 2017
Kiltz, E., Mohassel, P., Weinreb, E., Franklin, M.: Secure linear algebra using linearly recurrent sequences. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 291–310. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-70936-7_16
Kalyanasundaram, B., Schintger, G.: The probabilistic communication complexity of set intersection. SIAM J. Discret. Math. 5(4), 545–557 (1992)
Kissner, L., Song, D.X.: Privacy-preserving set operations. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 241–257. Springer, Heidelberg (2005). https://doi.org/10.1007/11535218_15
Marlinspike, M.: The difficulty of private contact discovery (2014). https://signal.org/blog/contact-discovery
Meadows, C.A.: A more efficient cryptographic matchmaking protocol for use in the absence of a continuously available third party. In: Proceedings of the 1986 IEEE Symposium on Security and Privacy, Oakland, California, USA, 7–9 April 1986, pp. 134–137 (1986)
Müller-Quade, J., Unruh, D.: Long-term security and universal composability. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 41–60. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-70936-7_3
Minsky, Y., Trachtenberg, A., Zippel, R.: Set reconciliation with nearly optimal communication complexity. IEEE Trans. Inf. Theory 49(9), 2213–2218 (2003)
Nagaraja, S., Mittal, P., Hong, C.-Y., Caesar, M., Borisov, N.: BotGrep: finding P2P bots with structured graph analysis. In: Proceedings of the 19th USENIX Security Symposium, Washington, DC, USA, 11–13 August 2010, pp. 95–110 (2010)
Naor, M., Pinkas, B.: Oblivious transfer and polynomial evaluation. In: 31st ACM STOC, pp. 245–254. ACM Press, May 1999
Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X_16
Pinkas, B., Schneider, T., Segev, G., Zohner, M.: Phasing: private set intersection using permutation-based hashing. In: 24th USENIX Security Symposium, USENIX Security 15, Washington, D.C., USA, 12–14 August 2015, pp. 515–530 (2015)
Pinkas, B., Schneider, T., Weinert, C., Wieder, U.: Efficient Circuit-based PSI via Cuckoo hashing. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10822, pp. 125–157. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78372-7_5
Pinkas, B., Schneider, T., Zohner, M.: Faster private set intersection based on OT extension. In: Proceedings of the 23rd USENIX Security Symposium, San Diego, CA, USA, 20–22 August 2014, pp. 797–812 (2014)
Rivest, R.L., Adleman, L., Dertouzos, M.L.: On data banks and privacy homomorphisms. Found. Secur. Comput. 4(11), 169–180 (1978)
Razborov, A.A.: Applications of matrix methods to the theory of lower bounds in computational complexity. Combinatorica 10(1), 81–93 (1990)
Rindal, P., Rosulek, M.: Improved private set intersection against malicious adversaries. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10210, pp. 235–259. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56620-7_9
Rindal, P., Rosulek, M.: Malicious-secure private set intersection via dual execution. In: Thuraisingham, B.M., Evans, D., Malkin, T., Xu, D. (eds.) ACM CCS 2017, pp. 1229–1242. ACM Press, October/November 2017
Yao, A.C.-C.: How to generate and exchange secrets (extended abstract). In: 27th FOCS, pp. 162–167. IEEE Computer Society Press, October 1986
Zhao, Y., Chow, S.S.M.: Can you find the one for me? Privacy-preserving matchmaking via threshold PSI. Cryptology ePrint Archive, Report 2018/184 (2018). https://eprint.iacr.org/2018/184
Acknowledgments
We would like to thank Ivan Damgård, Claudio Orlandi, and Tobias Nilges for the fruitful discussions that have helped shape the current work.
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 International Association for Cryptologic Research
About this paper
Cite this paper
Ghosh, S., Simkin, M. (2019). The Communication Complexity of Threshold Private Set Intersection. In: Boldyreva, A., Micciancio, D. (eds) Advances in Cryptology – CRYPTO 2019. CRYPTO 2019. Lecture Notes in Computer Science(), vol 11693. Springer, Cham. https://doi.org/10.1007/978-3-030-26951-7_1
Download citation
DOI: https://doi.org/10.1007/978-3-030-26951-7_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-26950-0
Online ISBN: 978-3-030-26951-7
eBook Packages: Computer ScienceComputer Science (R0)