[go: up one dir, main page]

Skip to main content

Left Atrial Segmentation Combining Multi-atlas Whole Heart Labeling and Shape-Based Atlas Selection

  • Conference paper
  • First Online:
Statistical Atlases and Computational Models of the Heart. Atrial Segmentation and LV Quantification Challenges (STACOM 2018)

Abstract

Segmentation of the left atria (LA) from late gadolinium enhanced magnetic resonance imaging (LGE-MRI) is challenging since atrial borders are not easily distinguishable in the images. We propose a method based on multi-atlas whole heart segmentation and shape modeling of the LA. In the training phase we first construct whole heart LGE-MRI atlases and build a principal component analysis (PCA) model able to capture the high variability of the LA shapes. All atlases are clustered according to their LA shape using an unsupervised clustering method which additionally outputs the most representative case in each cluster. All cluster representatives are registered to the target image and ranked using conditional entropy. A small subset of the most similar representatives is used to find LA shapes with similar morphology in the training set that are used to obtain the final LA segmentation. We tested our approach using 80 LGE-MRI data for training and 20 LGE-MRI data for testing obtaining a Dice score of \(0.842 \pm 0.049\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://atriaseg2018.cardiacatlas.org/.

References

  1. Andrade, J., Khairy, P., Dobrev, D., Nattel, S.: The clinical profile and pathophysiology of atrial fibrillation: relationships among clinical features, epidemiology, and mechanisms. Circ. Res. 114(9), 1453–1468 (2014)

    Article  Google Scholar 

  2. Chen, J., et al.: Multiview two-task recursive attention model for left atrium and atrial scars segmentation. arXiv preprint arXiv:1806.04597 (2018)

  3. Depa, M., Sabuncu, M.R., Holmvang, G., Nezafat, R., Schmidt, E.J., Golland, P.: Robust atlas-based segmentation of highly variable anatomy: left atrium segmentation. In: Camara, O., Pop, M., Rhode, K., Sermesant, M., Smith, N., Young, A. (eds.) STACOM 2010. LNCS, vol. 6364, pp. 85–94. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15835-3_9

    Chapter  Google Scholar 

  4. Frey, B.J., Dueck, D.: Clustering by passing messages between data points. Science 315(5814), 972–976 (2007)

    Article  MathSciNet  Google Scholar 

  5. GarcĂ­a-Isla, G., et al.: Sensitivity analysis of geometrical parameters to study haemodynamics and thrombus formation in the left atrial appendage. Int. J. Numer. Meth. Biomed. Eng. 34, e3100 (2018)

    Article  Google Scholar 

  6. Iglesias, J.E., Sabuncu, M.R.: Multi-atlas segmentation of biomedical images: a survey. Med. Image Anal. 24(1), 205–219 (2015)

    Article  Google Scholar 

  7. Langerak, T.R., Berendsen, F.F., Van der Heide, U.A., Kotte, A.N., Pluim, J.P.: Multiatlas-based segmentation with preregistration atlas selection. Med. Phys. 40(9), 091701 (2013)

    Article  Google Scholar 

  8. Prasanna, L., Praveena, R., D’Souza, A.S., Kumar, M.: Variations in the pulmonary venous ostium in the left atrium and its clinical importance. J. Clin. Diagn. Res. 8(2), 10 (2014)

    Google Scholar 

  9. Rueckert, D., Lorenzo-Valdes, M., Chandrashekara, R., Sanchez-Ortiz, G., Mohiaddin, R.: Non-rigid registration of cardiac MR: application to motion modelling and atlas-based segmentation. In: Proceedings of 2002 IEEE International Symposium on Biomedical Imaging, pp. 481–484 (2002)

    Google Scholar 

  10. Sanroma, G., Wu, G., Gao, Y., Shen, D.: Learning-based atlas selection for multiple-atlas segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3111–3117 (2014)

    Google Scholar 

  11. Tao, Q., Ipek, E.G., Shahzad, R., Berendsen, F.F., Nazarian, S., van der Geest, R.J.: Fully automatic segmentation of left atrium and pulmonary veins in late gadolinium-enhanced MRI: towards objective atrial scar assessment. J. Magn. Reson. Imaging 44(2), 346–354 (2016)

    Article  Google Scholar 

  12. Tobon-Gomez, C., et al.: Benchmark for algorithms segmenting the left atrium from 3D CT and MRI datasets. IEEE Trans. Med. Imaging 34(7), 1460–1473 (2015)

    Article  Google Scholar 

  13. Vos, T., et al.: Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990–2015: a systematic analysis for the global burden of disease study 2015. Lancet 388(10053), 1545–1602 (2016)

    Article  Google Scholar 

  14. Zhuang, X., et al.: Multiatlas whole heart segmentation of CT data using conditional entropy for atlas ranking and selection. Med. Phys. 42(7), 3822–3833 (2015)

    Article  Google Scholar 

  15. Zhuang, X., Rhode, K.S., Razavi, R.S., Hawkes, D.J., Ourselin, S.: A registration-based propagation framework for automatic whole heart segmentation of cardiac MRI. IEEE Trans. Med. Imaging 29(9), 1612–1625 (2010)

    Article  Google Scholar 

  16. Zhuang, X., Shen, J.: Multi-scale patch and multi-modality atlases for whole heart segmentation of MRI. Med. Image Anal. 31, 77–87 (2016)

    Article  Google Scholar 

Download references

Acknowledgments

This study was partially funded by the Spanish Ministry of Economy and Competitiveness (DPI2015-71640-R) and by the “Fundació La Marató de TV3” (no 20154031).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marta Nuñez-Garcia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nuñez-Garcia, M. et al. (2019). Left Atrial Segmentation Combining Multi-atlas Whole Heart Labeling and Shape-Based Atlas Selection. In: Pop, M., et al. Statistical Atlases and Computational Models of the Heart. Atrial Segmentation and LV Quantification Challenges. STACOM 2018. Lecture Notes in Computer Science(), vol 11395. Springer, Cham. https://doi.org/10.1007/978-3-030-12029-0_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-12029-0_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-12028-3

  • Online ISBN: 978-3-030-12029-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics