Abstract
Secure multi-party computation (MPC) allows mutually distrusting parties to compute securely over their private data. The hardness of MPC, essentially, lies in performing secure multiplications over suitable algebras.
There are several cryptographic resources that help securely compute one multiplication over a large finite field, say \({\mathbb G} {\mathbb F} \left[ 2^n\right] \), with linear communication complexity. For example, the computational hardness assumption like noisy Reed-Solomon codewords are pseudorandom. However, it is not known if we can securely compute, say, a linear number of \(\mathsf {AND}\)-gates from such resources, i.e., a linear number of multiplications over the base field \({\mathbb G} {\mathbb F} \left[ 2\right] \). Before our work, we could only perform o(n) secure \(\mathsf {AND}\)-evaluations.
Technically, we construct a perfectly secure protocol that realizes a linear number of multiplication gates over the base field using one multiplication gate over a degree-n extension field. This construction relies on the toolkit provided by algebraic function fields.
Using this construction, we obtain the following results. We provide the first construction that computes a linear number of oblivious transfers with linear communication complexity from the computational hardness assumptions like noisy Reed-Solomon codewords are pseudorandom, or arithmetic-analogues of LPN-style assumptions. Next, we highlight the potential of our result for other applications to MPC by constructing the first correlation extractor that has 1 / 2 resilience and produces a linear number of oblivious transfers.
The research effort is supported in part by an NSF CRII Award CNS-1566499, an NSF SMALL Award CNS-1618822, and an REU CNS-1724673.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Network latency considerations typically motivate the study of MPC protocols with linear communication complexity.
- 2.
Note that this is exact polynomial multiplication because the degree of A(t) and B(t) are both \(<m\). So, the degree of C(t) is \(<2m-1=n\). This observation, intuitively, implies that “\(\mod \pi (t)\)” does not affect C(t).
References
Applebaum, B., Damgård, I., Ishai, Y., Nielsen, M., Zichron, L.: Secure arithmetic computation with constant computational overhead. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10401, pp. 223–254. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63688-7_8
Atighehchi, K., Ballet, S., Bonnecaze, A., Rolland, R.: On chudnovsky-based arithmetic algorithms in finite fields. CoRR abs/1510.00090 (2015). http://arxiv.org/abs/1510.00090
Ballet, S., Rolland, R.: Multiplication algorithm in a finite field and tensor rank of the multiplication. J. Algebra 272(1), 173–185 (2004). https://doi.org/10.1016/j.jalgebra.2003.09.031. http://www.sciencedirect.com/science/article/pii/S0021869303006951
Ballet, S., Baudru, N., Bonnecaze, A., Tukumuli, M.: On the construction of the asymmetric chudnovsky multiplication algorithm in finite fields without derivated evaluation. Comptes Rendus Mathematique 355(7), 729–733 (2017). https://doi.org/10.1016/j.crma.2017.06.002. http://www.sciencedirect.com/science/article/pii/S1631073X17301577
Ballet, S., Bonnecaze, A., Tukumuli, M.: On the construction of elliptic chudnovsky-type algorithms for multiplication in large extensions of finite fields, March 2013
Ballet, S., Pieltant, J., Rambaud, M.: On some bounds for symmetric tensor rank of multiplication in finite fields. CoRR abs/1601.00126 (2016). http://arxiv.org/abs/1601.00126
Beaver, D.: Perfect privacy for two-party protocols. In: Feigenbaum, J., Merritt, M. (eds.), vol. 2, pp. 65–77. American Mathematical Society, Providence (1989)
Beimel, A., Malkin, T., Micali, S.: The all-or-nothing nature of two-party secure computation. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 80–97. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1_6
Block, A.R., Gupta, D., Maji, H.K., Nguyen, H.H.: Secure computation using leaky correlations (asymptotically optimal constructions). Cryptology ePrintArchive, Report 2018/372 (2018). https://eprint.iacr.org/2018/372
Block, A.R., Maji, H.K., Nguyen, H.H.: Secure computation based on leaky correlations: high resilience setting. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10402, pp. 3–32. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63715-0_1
Block, A.R., Maji, H.K., Nguyen, H.H.: Secure computation with constant communication overhead using multiplication embeddings. Cryptology ePrint Archive, Report 2018/395 (2018). https://eprint.iacr.org/2018/395
Boyle, E., Gilboa, N., Ishai, Y.: Group-based secure computation: optimizing rounds, communication, and computation. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10211, pp. 163–193. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56614-6_6
Bürgisser, P., Clausen, M., Shokrollahi, M.A.: Algebraic Complexity Theory. Grundlehren der mathematischen Wissenschaften, vol. 315. Springer, NewYork (1997). https://doi.org/10.1007/978-3-662-03338-8
Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally composable two-party and multi-party secure computation, pp. 494–503 (2002). https://doi.org/10.1145/509907.509980
Cascudo, I.: On asymptotically good strongly multiplicative linear secret sharing. Ph.D. thesis, Tesis doctoral, Universidad de Oviedo (2010)
Cascudo, I., Cramer, R., Xing, C., Yuan, C.: Amortized complexity of information-theoretically secure MPC revisited. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10993, pp. 395–426. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96878-0_14
Cenk, M., Özbudak, F.: On multiplication in finite fields. J. Complex. 26(2), 172–186 (2010)
Chandran, N., Goyal, V., Sahai, A.: New constructions for UC secure computation using tamper-proof hardware. In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 545–562. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78967-3_31
Chaumine, J.: Multiplication in small finite fields using elliptic curves, pp. 343–350 (2012). https://doi.org/10.1142/9789812793430_0018. https://www.worldscientific.com/doi/abs/10.1142/9789812793430_0018
Chen, H., Cramer, R.: Algebraic geometric secret sharing schemes and secure multi-party computations over small fields. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 521–536. Springer, Heidelberg (2006). https://doi.org/10.1007/11818175_31
Chudnovsky, D.V., Chudnovsky, G.V.: Algebraic complexities and algebraic curves over finite fields. Proc. Nat. Acad. Sci. 84(7), 1739–1743 (1987)
Crépeau, C., Kilian, J.: Achieving oblivious transfer using weakened security assumptions (extended abstract), pp. 42–52 (1988). https://doi.org/10.1109/SFCS.1988.21920
Damgård, I., Jurik, M.: A generalisation, a simpli.cation and some applications of paillier’s probabilistic public-key system. In: Kim, K. (ed.) PKC 2001. LNCS, vol. 1992, pp. 119–136. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44586-2_9
Damgård, I., Nielsen, J.B., Wichs, D.: Isolated proofs of knowledge and isolated zero knowledge. In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 509–526. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78967-3_29
Damgård, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty computation from somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5_38
Dodis, Y., Halevi, S., Rothblum, R.D., Wichs, D.: Spooky encryption and its applications. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9816, pp. 93–122. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53015-3_4
Garcia, A., Stichtenoth, H.: A tower of artin-schreier extensions of function fields attaining the drinfeld-vladut bound. Inventiones Mathematicae 121(1), 211–222 (1995)
Garcia, A., Stichtenoth, H.: On the asymptotic behaviour of some towers of function fields over finite fields. J. Number Theory 61(2), 248–273 (1996)
Gilboa, N.: Two party RSA key generation. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 116–129. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1_8
Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or A completeness theorem for protocols with honest majority, pp. 218–229 (1987). https://doi.org/10.1145/28395.28420
Goppa, V.D.: Codes on algebraic curves. Soviet Math. Dokl. 24, 170–172 (1981)
Gupta, D., Ishai, Y., Maji, H.K., Sahai, A.: Secure computation from leaky correlated randomness. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 701–720. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48000-7_34
Impagliazzo, R., Luby, M.: One-way functions are essential for complexity based cryptography (extended abstract), pp. 230–235 (1989). https://doi.org/10.1109/SFCS.1989.63483
Ishai, Y., Kushilevitz, E., Ostrovsky, R., Prabhakaran, M., Sahai, A., Wullschleger, J.: Constant-rate oblivious transfer from noisy channels. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 667–684. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22792-9_38
Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Cryptography with constant computational overhead, pp. 433–442 (2008). https://doi.org/10.1145/1374376.1374438
Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Extracting correlations, pp. 261–270 (2009). https://doi.org/10.1109/FOCS.2009.56
Ishai, Y., Maji, H.K., Sahai, A., Wullschleger, J.: Single-use OT combiners with near-optimal resilience. In: 2014 IEEE International Symposium on Information Theory, Honolulu, HI, USA, June 29–July 4 2014, pp. 1544–1548. IEEE (2014). https://doi.org/10.1109/ISIT.2014.6875092
Ishai, Y., Prabhakaran, M., Sahai, A.: Founding cryptography on oblivious transfer – efficiently. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 572–591. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85174-5_32
Ishai, Y., Prabhakaran, M., Sahai, A.: Secure arithmetic computation with no honest majority. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 294–314. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00457-5_18
Katz, J.: Universally composable multi-party computation using tamper-proof hardware. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 115–128. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72540-4_7
Kilian, J.: Founding cryptography on oblivious transfer, pp. 20–31 (1988). https://doi.org/10.1145/62212.62215
Kilian, J.: A general completeness theorem for two-party games, pp. 553–560 (1991). https://doi.org/10.1145/103418.103475
Kilian, J.: More general completeness theorems for secure two-party computation, pp. 316–324 (2000). https://doi.org/10.1145/335305.335342
Kushilevitz, E.: Privacy and communication complexity, pp. 416–421 (1989). https://doi.org/10.1109/SFCS.1989.63512
Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_1
Moran, T., Segev, G.: David and goliath commitments: UC computation for asymmetric parties using tamper-proof hardware. In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 527–544. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78967-3_30
Naor, M., Pinkas, B.: Oblivious polynomial evaluation. SIAM J. Comput. 35(5), 1254–1281 (2006)
Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X_16
Randriambololona, H.: Bilinear complexity of algebras and the chudnovsky-chudnovsky interpolation method. J. Complex. 28(4), 489–517 (2012)
Shparlinski, I., Tsfasman, M., Vladut, S.: Curves with many points and multiplication in finite-fields. Lect. Notes Math. 1518, 145–169 (1992)
Shum, K.W., Aleshnikov, I., Kumar, P.V., Stichtenoth, H., Deolalikar, V.: A low-complexity algorithm for the construction of algebraic-geometric codes better than the gilbert-varshamov bound. IEEE Trans. Inf. Theory 47(6), 2225–2241 (2001)
Wolf, S., Wullschleger, J.: Oblivious transfer is symmetric. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 222–232. Springer, Heidelberg (2006). https://doi.org/10.1007/11761679_14
Yao, A.C.C.: Protocols for secure computations (extended abstract), pp. 160–164 (1982). https://doi.org/10.1109/SFCS.1982.38
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this paper
Cite this paper
Block, A.R., Maji, H.K., Nguyen, H.H. (2018). Secure Computation with Constant Communication Overhead Using Multiplication Embeddings. In: Chakraborty, D., Iwata, T. (eds) Progress in Cryptology – INDOCRYPT 2018. INDOCRYPT 2018. Lecture Notes in Computer Science(), vol 11356. Springer, Cham. https://doi.org/10.1007/978-3-030-05378-9_20
Download citation
DOI: https://doi.org/10.1007/978-3-030-05378-9_20
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-05377-2
Online ISBN: 978-3-030-05378-9
eBook Packages: Computer ScienceComputer Science (R0)