Abstract
Search of valid drug candidates for a given target is a vital part of modern drug discovery. Since the problem was established, a number of approaches have been proposed that augment interaction networks with, typically, two compound/target similarity networks. In this work we propose a method capable of using an arbitrary number of similarity or interaction networks. We adapt an existing method for random walks on heterogeneous networks and show that adding additional networks improves prediction quality.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
An open-access database is available at http://prosite.expasy.org.
- 2.
in ligands.csv, interactions.csv, and targets_and_families.csv, respectively.
- 3.
Cutoff proposed by researchers from CERMN (http://cermn.unicaen.fr).
- 4.
- 5.
Global Query Cross-Database Search System gene identifiers: https://www.ncbi.nlm.nih.gov/gene.
- 6.
Precision at 20.
- 7.
References
Buza, K., Peska, L.: ALADIN: a new approach for drug–target interaction prediction. In: Ceci, M., Hollmén, J., Todorovski, L., Vens, C., Džeroski, S. (eds.) ECML PKDD 2017. LNCS (LNAI), vol. 10535, pp. 322–337. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-71246-8_20
Chen, X., Liu, M.X., Yan, G.Y.: Drug-target interaction prediction by random walk on the heterogeneous network. Mol. BioSyst. 8(7), 1970–1978 (2012)
Cheng, F., Zhou, Y., Li, W., Liu, G., Tang, Y.: Prediction of chemical-protein interactions network with weighted network-based inference method. PloS One 7(7), e41064 (2012)
Hattori, M., Okuno, Y., Goto, S., Kanehisa, M.: Development of a chemical structure comparison method for integrated analysis of chemical and genomic information in the metabolic pathways. JACS 125(39), 11853–11865 (2003)
Haveliwala, T.H.: Topic-sensitive pagerank: a context-sensitive ranking algorithm for web search. TKDE 15(4), 784–796 (2003)
Leskovec, J., Rajaraman, A., Ullman, J.D.: Mining of Massive Datasets. Cambridge University Press, Cambridge (2014)
Lim, H., Gray, P., Xie, L., Poleksic, A.: Improved genome-scale multi-target virtual screening via a novel collaborative filtering approach to cold-start problem. Sci. Rep. 6, 38860 (2016)
Liu, Y., Zeng, X., He, Z., Zou, Q.: Inferring microrna-disease associations by random walk on a heterogeneous network with multiple data sources. TCBB 14(4), 905–915 (2017)
Luo, J., Xiao, Q.: A novel approach for predicting microrna-disease associations by unbalanced bi-random walk on heterogeneous network. J. Biomed. Inform. 66, 194–203 (2017)
Pearson, K.: The problem of the random walk. Nature 72(1867), 342 (1905)
Smith, T., Waterman, M.: Identification of common molecular subsequences. Mol. Biol. 147, 195–197 (1981)
Xie, M., Hwang, T., Kuang, R.: Prioritizing disease genes by bi-random walk. In: Tan, P.-N., Chawla, S., Ho, C.K., Bailey, J. (eds.) PAKDD 2012. LNCS (LNAI), vol. 7302, pp. 292–303. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-30220-6_25
Yamanishi, Y., Araki, M., Gutteridge, A., Honda, W., Kanehisa, M.: Prediction of drug-target interaction networks from the integration of chemical and genomic spaces. Bioinformatics 24(13), i232–i240 (2008)
Yamanishi, Y., Kotera, M., Kanehisa, M., Goto, S.: Drug-target interaction prediction from chemical, genomic and pharmacological data in an integrated framework. Bioinformatics 26(12), i246–i254 (2010)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this paper
Cite this paper
Koptelov, M., Zimmermann, A., Crémilleux, B. (2018). Link Prediction in Multi-layer Networks and Its Application to Drug Design. In: Duivesteijn, W., Siebes, A., Ukkonen, A. (eds) Advances in Intelligent Data Analysis XVII. IDA 2018. Lecture Notes in Computer Science(), vol 11191. Springer, Cham. https://doi.org/10.1007/978-3-030-01768-2_15
Download citation
DOI: https://doi.org/10.1007/978-3-030-01768-2_15
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-01767-5
Online ISBN: 978-3-030-01768-2
eBook Packages: Computer ScienceComputer Science (R0)