[go: up one dir, main page]

Skip to main content

Link Prediction in Multi-layer Networks and Its Application to Drug Design

  • Conference paper
  • First Online:
Advances in Intelligent Data Analysis XVII (IDA 2018)

Abstract

Search of valid drug candidates for a given target is a vital part of modern drug discovery. Since the problem was established, a number of approaches have been proposed that augment interaction networks with, typically, two compound/target similarity networks. In this work we propose a method capable of using an arbitrary number of similarity or interaction networks. We adapt an existing method for random walks on heterogeneous networks and show that adding additional networks improves prediction quality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    An open-access database is available at http://prosite.expasy.org.

  2. 2.

    in ligands.csv, interactions.csv, and targets_and_families.csv, respectively.

  3. 3.

    Cutoff proposed by researchers from CERMN (http://cermn.unicaen.fr).

  4. 4.

    https://www.ncbi.nlm.nih.gov/protein/.

  5. 5.

    Global Query Cross-Database Search System gene identifiers: https://www.ncbi.nlm.nih.gov/gene.

  6. 6.

    Precision at 20.

  7. 7.

    https://zimmermanna.users.greyc.fr/supplementary-material.html.

References

  1. Buza, K., Peska, L.: ALADIN: a new approach for drug–target interaction prediction. In: Ceci, M., Hollmén, J., Todorovski, L., Vens, C., Džeroski, S. (eds.) ECML PKDD 2017. LNCS (LNAI), vol. 10535, pp. 322–337. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-71246-8_20

    Chapter  Google Scholar 

  2. Chen, X., Liu, M.X., Yan, G.Y.: Drug-target interaction prediction by random walk on the heterogeneous network. Mol. BioSyst. 8(7), 1970–1978 (2012)

    Article  Google Scholar 

  3. Cheng, F., Zhou, Y., Li, W., Liu, G., Tang, Y.: Prediction of chemical-protein interactions network with weighted network-based inference method. PloS One 7(7), e41064 (2012)

    Article  Google Scholar 

  4. Hattori, M., Okuno, Y., Goto, S., Kanehisa, M.: Development of a chemical structure comparison method for integrated analysis of chemical and genomic information in the metabolic pathways. JACS 125(39), 11853–11865 (2003)

    Article  Google Scholar 

  5. Haveliwala, T.H.: Topic-sensitive pagerank: a context-sensitive ranking algorithm for web search. TKDE 15(4), 784–796 (2003)

    Google Scholar 

  6. Leskovec, J., Rajaraman, A., Ullman, J.D.: Mining of Massive Datasets. Cambridge University Press, Cambridge (2014)

    Book  Google Scholar 

  7. Lim, H., Gray, P., Xie, L., Poleksic, A.: Improved genome-scale multi-target virtual screening via a novel collaborative filtering approach to cold-start problem. Sci. Rep. 6, 38860 (2016)

    Article  Google Scholar 

  8. Liu, Y., Zeng, X., He, Z., Zou, Q.: Inferring microrna-disease associations by random walk on a heterogeneous network with multiple data sources. TCBB 14(4), 905–915 (2017)

    Google Scholar 

  9. Luo, J., Xiao, Q.: A novel approach for predicting microrna-disease associations by unbalanced bi-random walk on heterogeneous network. J. Biomed. Inform. 66, 194–203 (2017)

    Article  Google Scholar 

  10. Pearson, K.: The problem of the random walk. Nature 72(1867), 342 (1905)

    Article  Google Scholar 

  11. Smith, T., Waterman, M.: Identification of common molecular subsequences. Mol. Biol. 147, 195–197 (1981)

    Article  Google Scholar 

  12. Xie, M., Hwang, T., Kuang, R.: Prioritizing disease genes by bi-random walk. In: Tan, P.-N., Chawla, S., Ho, C.K., Bailey, J. (eds.) PAKDD 2012. LNCS (LNAI), vol. 7302, pp. 292–303. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-30220-6_25

    Chapter  Google Scholar 

  13. Yamanishi, Y., Araki, M., Gutteridge, A., Honda, W., Kanehisa, M.: Prediction of drug-target interaction networks from the integration of chemical and genomic spaces. Bioinformatics 24(13), i232–i240 (2008)

    Article  Google Scholar 

  14. Yamanishi, Y., Kotera, M., Kanehisa, M., Goto, S.: Drug-target interaction prediction from chemical, genomic and pharmacological data in an integrated framework. Bioinformatics 26(12), i246–i254 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maksim Koptelov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Koptelov, M., Zimmermann, A., Crémilleux, B. (2018). Link Prediction in Multi-layer Networks and Its Application to Drug Design. In: Duivesteijn, W., Siebes, A., Ukkonen, A. (eds) Advances in Intelligent Data Analysis XVII. IDA 2018. Lecture Notes in Computer Science(), vol 11191. Springer, Cham. https://doi.org/10.1007/978-3-030-01768-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-01768-2_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-01767-5

  • Online ISBN: 978-3-030-01768-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics