Abstract
Fingerprint classification is a useful technique for reducing the number of comparisons in automated fingerprint identification systems. But it remains a challenging issue due to the large intra-class and the small inter-class variations.
In this work, we propose a novel approach to perform fingerprint classification based on combining the Radon transform and the convolutional neural networks (CNN). The proposed approach is based on the Conic Radon Transform (CRT). The CRT extends the Classical Radon Transform (RT) to integrate an image function f(x,y) over conic sections. The Radon technique enables the extraction of fingerprint’s global characteristics which are invariant to geometrical transformations such as translation and rotation.
We define an expansion of convolutional neural networks input features based on CRT. Thus, we perform first RT over conic sections on source image, and then use the Radon result as an input for convolutional layers.
To evaluate the performance of this approach, we have driven tests on the NIST SD4 benchmark database. The obtained results show that this approach is competitive to other related methods in terms of accuracy rate and computational time.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Radon, J.: Über die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Mannigfaltigkeiten. Akad. Wiss. 69, 262–277 (1917)
Candela, G.T., Grother, P.J., Watson, C.I., Wilkinson, R., Wilson, C.L.: Pcasys - a patternlevel classification automation system for fingerprints. NIST technical report NISTIR, 5647 (1995)
Cao, K., Pang, L., Liang, J., Tian, J.: Fingerprint classification by a hierarchical classifier. Pattern Recognit. 46(12), 3186–3197 (2013). http://www.sciencedirect.com/science/article/pii/S0031320313002124
Goodfellow, I.J., Bengio, Y., Courville, A.C.: Deep Learning. Adaptive Computation and Machine Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org/
Haddad, Z., Beghdadi, A., Serir, A., Mokraoui, A.: Fingerprint identification using radon transform. In: Image Processing Theory, Tools and Applications 2008, pp. 1–7 (2008)
Hamdi, D.E., Nguyen, M.K., Tabia, H., Hamouda, A.: Image analysis based on radon-type integral transforms over conic sections. In: Proceedings of the 13th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2018), vol. 4, VISAPP, Funchal, Madeira, Portugal, 27–29 January 2018, pp. 356–362 (2018). https://doi.org/10.5220/0006613403560362
Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. Commun. ACM 60(6), 84–90 (2017). https://doi.org/10.1145/3065386
Li, J., Yau, W., Wang, H.: Combining singular points and orientation image information for fingerprint classification. Pattern Recognit. 41(1), 353–366 (2008). https://doi.org/10.1016/j.patcog.2007.03.015
Maltoni, D.: Fingerprint recognition, overview. In: Li, S.Z., Jain, A.K. (eds.) Encyclopedia of Biometrics, pp. 510–513. Springer, Boston (2009). https://doi.org/10.1007/978-0-387-73003-5
Michelsanti, D., Guichi, Y., Ene, A.D., Stef, R., Nasrollahi, K., Moeslund, T.: Fast fingerprint classification with deep neural network. In: VISAPP - International Conference on Computer Vision Theory and Applications (2017)
Peralta, D., Triguero, I., García, S., Saeys, Y., Benítez, J.M., Herrera, F.: On the use of convolutional neural networks for robust classification of multiple fingerprint captures. Int. J. Intell. Syst. 33(1), 213–230 (2018). https://doi.org/10.1002/int.21948
Schuch, P., Schulz, S., Busch, C.: De-convolutional auto-encoder for enhancement of fingerprint samples. In: Sixth International Conference on Image Processing Theory, Tools and Applications, IPTA 2016, Oulu, Finland, 12–15 December 2016, pp. 1–7 (2016). https://doi.org/10.1109/IPTA.2016.7821036
Schwenk, H., Barrault, L., Conneau, A., LeCun, Y.: Very deep convolutional networks for text classification. In: Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics, EACL 2017, Valencia, Spain, 3–7 April 2017, vol. 1: Long Papers, pp. 1107–1116 (2017). https://aclanthology.info/papers/E17-1104/e17-1104
Senior, A.: A combination fingerprint classifier. IEEE Trans. Pattern Anal. Mach. Intell. 23, 1165–1174 (2001). https://doi.org/10.1109/34.954606
Wang, R., Han, C., Wu, Y., Guo, T.: Fingerprint classification based on depth neural network. CoRR abs/1409.5188 (2014). arXiv:1409.5188
Zhu, E., Guo, X., Yin, J.: Walking to singular points of fingerprints. Pattern Recognit. 56, 116–128 (2016). http://www.sciencedirect.com/science/article/pii/S0031320316000868
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this paper
Cite this paper
El Hamdi, D., Elouedi, I., Fathallah, A., Nguyen, M.K., Hamouda, A. (2018). Fingerprint Classification Using Conic Radon Transform and Convolutional Neural Networks. In: Blanc-Talon, J., Helbert, D., Philips, W., Popescu, D., Scheunders, P. (eds) Advanced Concepts for Intelligent Vision Systems. ACIVS 2018. Lecture Notes in Computer Science(), vol 11182. Springer, Cham. https://doi.org/10.1007/978-3-030-01449-0_34
Download citation
DOI: https://doi.org/10.1007/978-3-030-01449-0_34
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-01448-3
Online ISBN: 978-3-030-01449-0
eBook Packages: Computer ScienceComputer Science (R0)