Abstract
In the literature, limited work has been conducted to develop sentiment resources for Saudi dialect. The lack of resources such as dialectical lexicons and corpora are some of the major bottlenecks to the successful development of Arabic sentiment analysis models. In this paper, a semi-supervised approach is presented to construct an annotated sentiment corpus for Saudi dialect using Twitter. The presented approach is primarily based on a list of lexicons built by using word embedding techniques such as word2vec. A huge corpus extracted from twitter is annotated and manually reviewed to exclude incorrect annotated tweets which is publicly available. For corpus validation, state-of-the-art classification algorithms (such as Logistic Regression, Support Vector Machine, and Naive Bayes) are applied and evaluated. Simulation results demonstrate that the Naive Bayes algorithm outperformed all other approaches and achieved accuracy up to 91%.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Please contact aaq@cs.stir.ac.uk or ahu@stir.ac.uk to access the dataset.
References
Abdul-Mageed, M., Diab, M.: Sana: a large scale multi-genre, multi-dialect lexicon for arabic subjectivity and sentiment analysis. In: Proceedings of the Ninth International Conference on Language Resources and Evaluation (LREC-2014), European Language Resources Association (ELRA) (2014). http://www.aclweb.org/anthology/L14-1702
Abdul-Mageed, M., Diab, M.T.: Awatif: A multi-genre corpus for modern standard Arabic subjectivity and sentiment analysis. In: LREC, pp. 3907–3914. Citeseer (2012)
Al-Twairesh, N., Al-Khalifa, H.S., Al-Salman, A.S.: Arasenti: Large-scale twitter-specific Arabic sentiment lexicons. In: ACL (2016)
Aldayel, H.K., Azmi, A.M.: Arabic tweets sentiment analysis - a hybrid scheme. J. Inf. Sci. 42(6), 782–797 (2016)
Alqarafi, A.S., Adeel, A., Gogate, M., Dashitpour, K., Hussain, A., Durrani, T.: Toward’s arabic multi-modal sentiment analysis. In: Liang, Q., Mu, J., Jia, M., Wang, W., Feng, X., Zhang, B. (eds.) Communications, Signal Processing, and Systems, pp. 2378–2386. Springer, Singapore (2019). https://doi.org/10.1007/978-981-10-6571-2_290
Altrabsheh, N., El-Masri, M., Mansour, H.: Combining sentiment lexicons of Arabic terms (2017)
Assiri, A., Emam, A., Al-Dossari, H.: Towards enhancement of a lexicon-based approach for Saudi dialect sentiment analysis. J. Inf. Sci. 44(2), 184–202 (2018). https://doi.org/10.1177/0165551516688143
Badaro, G., Baly, R., Hajj, H., Habash, N., El-Hajj, W.: A large scale Arabic sentiment lexicon for Arabic opinion mining. In: Proceedings of the EMNLP 2014 Workshop on Arabic Natural Language Processing (ANLP), pp. 165–173 (2014)
Badaro, G., Baly, R., Hajj, H.M., Habash, N., El-Hajj, W.: A large scale Arabic sentiment lexicon for Arabic opinion mining. In: ANLP@EMNLP (2014)
Dashtipour, K., et al.: Multilingual sentiment analysis: state of the art and independent comparison of techniques. Cogn. Comput. 8(4), 757–771 (2016). https://doi.org/10.1007/s12559-016-9415-7
El-Beltagy, S.R., Ali, A.: Open issues in the sentiment analysis of Arabic social media: a case study. In: 2013 9th International Conference on Innovations in Information Technology (IIT), pp. 215–220 (2013)
Eskander, R., Rambow, O.: Slsa: A sentiment lexicon for standard Arabic. In: EMNLP (2015)
Guellil, I., Boukhalfa, K.: Social big data mining: A survey focused on opinion mining and sentiments analysis. In: Programming and Systems (ISPS), 12th International Symposium on 2015, pp. 1–10. IEEE (2015)
Khalifa, K., Omar, N.: A hybrid method using lexicon-based approach and naive bayes classifier for arabic opinion question answering. J. Comput. Sci. 10(10), 1961 (2014)
Nabil, M., Aly, M., Atiya, A.: ASTD: Arabic sentiment tweets dataset. In: Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, pp. 2515–2519 (2015)
Pak, A., Paroubek, P.: Twitter as a corpus for sentiment analysis and opinion mining. In: Calzolari, N., et al. (eds.) Proceedings of the Seventh International Conference on Language Resources and Evaluation (LREC 2010), European Language Resources Association (ELRA), Valletta, Malta (may 2010)
Rushdi-Saleh, M., Martín-Valdivia, M.T., Ureña-López, L.A., Perea-Ortega, J.M.: OCA: opinion corpus for Arabic. J. Assoc. Inf. Sci. Technol. 62(10), 2045–2054 (2011)
Sadat, F., Kazemi, F., Farzindar, A.: Automatic identification of Arabic dialects in social media. In: Proceedings of the First International Workshop on Social Media Retrieval and Analysis, pp. 35–40. ACM (2014)
Shoukry, A., Rafea, A.: A hybrid approach for sentiment classification of Egyptian dialect tweets. In: Arabic Computational Linguistics (ACLing), First International Conference on 2015, pp. 78–85. IEEE (2015)
Soliman, A.B., Eissa, K., El-Beltagy, S.R.: Aravec: a set of Arabic word embedding models for use in Arabic NLP. Proced. Comput. Sci. 117, 256–265 (2017)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this paper
Cite this paper
Alqarafi, A., Adeel, A., Hawalah, A., Swingler, K., Hussain, A. (2018). A Semi-supervised Corpus Annotation for Saudi Sentiment Analysis Using Twitter. In: Ren, J., et al. Advances in Brain Inspired Cognitive Systems. BICS 2018. Lecture Notes in Computer Science(), vol 10989. Springer, Cham. https://doi.org/10.1007/978-3-030-00563-4_57
Download citation
DOI: https://doi.org/10.1007/978-3-030-00563-4_57
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-00562-7
Online ISBN: 978-3-030-00563-4
eBook Packages: Computer ScienceComputer Science (R0)