[go: up one dir, main page]

Skip to main content

A New Steganographic Distortion Function with Explicit Considerations of Modification Interactions

  • Conference paper
  • First Online:
Cloud Computing and Security (ICCCS 2018)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11064))

Included in the following conference series:

  • 1969 Accesses

Abstract

Conventional steganographic schemes are based on optimizing an additive distortion function, which is defined by summing up the cost of modified pixels. Using such schemes, pixels with lower costs will be selected for modification. However, the interactions of embedding changes are not explicitly considered in the distortion function. In this paper, we propose a new framework for steganography that incorporates a term considering interactions of embedding changes in the distortion function. An algorithm is designed to minimize the distortion with an approximal but efficient solution using auxiliary costs. The proposed framework can eliminate the ambiguity in the definition of additive distortion caused by updated costs. Experimental results show the proposed framework is more resilient to steganalysis compared with the schemes with a conventional additive distortion function, and it works as best as the embedding schemes with synchronized modifications.

This work is supported in part by NSFC (Grant 61572329, 61772349, and U1636202) and in part by the Shenzhen R&D Program (Grant JCYJ20160328144421330).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bas, P., Filler, T., Pevný, T.: “Break our steganographic system”: the ins and outs of organizing BOSS. In: Filler, T., Pevný, T., Craver, S., Ker, A. (eds.) IH 2011. LNCS, vol. 6958, pp. 59–70. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24178-9_5

    Chapter  Google Scholar 

  2. Denemark, T., Fridrich, J.: Improving steganographic security by synchronizing the selection channel. In: Proceedings of the 3rd ACM Workshop on Information Hiding and Multimedia Security, pp. 5–14 (2015)

    Google Scholar 

  3. Denemark, T., Fridrich, J., Holub, V.: Further study on the security of S-UNIWARD. In: SPIE, Electronic Imaging, Media Watermarking, Security, and Forensics, pp. 902805-1–902805-13 (2014)

    Google Scholar 

  4. Denemark, T., Sedighi, V., Holub, V., Cogranne, R., Fridrich, J.: Selection-channel-aware rich model for steganalysis of digital images. In: Proceedings of IEEE International Workshop on Information Forensics and Security, pp. 48–53. IEEE (2014)

    Google Scholar 

  5. Filler, T., Judas, J., Fridrich, J.: Minimizing additive distortion in steganography using syndrome-trellis codes. IEEE Trans. Inf. Forensics Secur. 6(3–2), 920–935 (2011)

    Article  Google Scholar 

  6. Fridrich, J., Kodovský, J.: Rich models for steganalysis of digital images. IEEE Trans. Inf. Forensics Secur. 7(3), 868–882 (2012)

    Article  Google Scholar 

  7. Fridrich, J.: Minimizing the embedding impact in steganography. In: The Workshop on Multimedia and Security, pp. 2–10 (2006)

    Google Scholar 

  8. Fridrich, J.: Digital image steganography using universal distortion. In: ACM Workshop on Information Hiding and Multimedia Security, pp. 59–68 (2013)

    Google Scholar 

  9. Fridrich, J.J., Kodovskỳ, J.: Multivariate Gaussian model for designing additive distortion for steganography. In: Proceedings of 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 2949–2953 (2013)

    Google Scholar 

  10. Holub, V., Fridrich, J., Denemark, T.: Universal distortion function for steganography in an arbitrary domain. EURASIP J. Inf. Secur. 2014, 1–13 (2014)

    Article  Google Scholar 

  11. Holub, V., Fridrich, J.: Designing steganographic distortion using directional filters. In: IEEE International Workshop on Information Forensics and Security, pp. 234–239 (2012)

    Google Scholar 

  12. Ker, A.D., et al.: Moving steganography and steganalysis from the laboratory into the real world. In: Proceedings of the first ACM Workshop on Information Hiding and Multimedia Security, pp. 45–58. ACM (2013)

    Google Scholar 

  13. Kodovsky, J., Fridrich, J., Holub, V.: Ensemble classifiers for steganalysis of digital media. IEEE Trans. Inf. Forensics Secur. 7(2), 432–444 (2012)

    Article  Google Scholar 

  14. Li, B., Wang, M., Huang, J., Li, X.: A new cost function for spatial image steganography. In: Proceeding of IEEE International Conference on Image Processing, pp. 4026–4210 (2014)

    Google Scholar 

  15. Li, B., Wang, M., Li, X., Tan, S., Huang, J.: A strategy of clustering modification directions in spatial image steganography. IEEE Trans. Inf. Forensics Secur. 10(9), 1905–1917 (2015)

    Article  Google Scholar 

  16. Li, B., He, J., Huang, J., Shi, Y.Q.: A survey on image steganography and steganalysis. Dep. Comput. 2(3), 288–289 (2011)

    Google Scholar 

  17. Li, B., Li, Z., Zhou, S., Tan, S., Zhang, X.: New steganalytic features for spatial image steganography based on derivative filters and threshold LBP operator. IEEE Trans. Inf. Forensics Secur. 13(5), 1242–1257 (2018)

    Article  Google Scholar 

  18. Pan, F., Li, J., Li, X., Guo, Y.: Steganography based on minimizing embedding impact function and HVS. In: International Conference on Electronics, Communications and Control, pp. 490–493 (2011)

    Google Scholar 

  19. Pevny, T., Filler, T., Bas, P.: Using high-dimensional image models to perform highly undetectable steganography. In: Proceedings of International Workshop on Information Hiding, pp. 161–177 (2010)

    Google Scholar 

  20. Sedighi, V., Cogranne, R., Fridrich, J.: Content-adaptive steganography by minimizing statistical detectability. IEEE Trans. Inf. Forensics Secur. 11(2), 221–234 (2016)

    Article  Google Scholar 

  21. Tan, S., Zhang, H., Li, B., Huang, J.: Pixel-decimation-assisted steganalysis of synchronize-embedding-changes steganography. IEEE Trans. Inf. Forensics Secur. 12(7), 1658–1670 (2017)

    Article  Google Scholar 

  22. Tang, W., Li, H., Luo, W., Huang, J.: Adaptive steganalysis based on embedding probabilities of pixels. IEEE Trans. Inf. Forensics Secur. 11(4), 734–745 (2016)

    Google Scholar 

  23. Xu, G., Wu, H.Z., Shi, Y.Q.: Structural design of convolutional neural networks for steganalysis. IEEE Signal Process. Lett. 23(5), 708–712 (2016)

    Article  Google Scholar 

  24. Zeng, J., Tan, S., Li, B., Huang, J.: Large-scale JPEG steganalysis using hybrid deep-learning framework. IEEE Trans. Inf. Forensics Secur. 13(5), 1200–1214 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, H., Li, B., Tan, S. (2018). A New Steganographic Distortion Function with Explicit Considerations of Modification Interactions. In: Sun, X., Pan, Z., Bertino, E. (eds) Cloud Computing and Security. ICCCS 2018. Lecture Notes in Computer Science(), vol 11064. Springer, Cham. https://doi.org/10.1007/978-3-030-00009-7_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00009-7_42

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00008-0

  • Online ISBN: 978-3-030-00009-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics