[go: up one dir, main page]

Skip to main content

A Dynamical Systems Approach to the Oscillatory Singularity in Bianchi Cosmologies

  • Chapter
Deterministic Chaos in General Relativity

Part of the book series: NATO ASI Series ((NSSB,volume 332))

Abstract

We describe the behaviour of the orthogonal Bianchi cosmologies of types VIII and IX near the big-bang in terms of an attractor of a dynamical system. Comparisons are made with previous work.

This paper is a corrected version of the article appearing in Relativity Today, edited by Z. Perjés, Nova Science Publishers, Commack, NY, 1992

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Anosov, D.V. and Arnold, V.I. (1988), Dynamical Systems I, Springer-Verlag, New York, NY.

    Book  MATH  Google Scholar 

  • Barrow, J.D. (1979), Nature, 272, 211.

    Article  ADS  Google Scholar 

  • Barrow, J.D. (1982), Phys. Rep., 85, 1.

    Article  MathSciNet  ADS  Google Scholar 

  • Belinskii, V.A. and Khalatnikov, I.M. (1969), Sov. Phys. JETP, 29, 911.

    ADS  Google Scholar 

  • Belinskii, V.A., Khalatnikov, I.M. and Lifshitz, E.M., (1970), Adv. Phys., 19, 525.

    Article  ADS  Google Scholar 

  • Bogoyavlensky, O.I., and Novikov, S.P. (1973), Sov. Phys. JETP, 37, 747.

    ADS  Google Scholar 

  • Bogoyavlensky, O.I. (1985), Methods in the Qualitative Theory of Dynamical Systems in Astrophysics and Gas Dynamics, Springer Verlag, New York, NY.

    Book  MATH  Google Scholar 

  • Burd, A.B., Buric, N. and Ellis, G.F.R. (1990), Gen. Rel. Grav., 22, 349.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Ellis, G.F.R. and MacCallum, M.A.H. (1969), Commun. Math. Phys., 12, 108–141.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Francisco, G. and Matsas, G.E.A. (1988), Gen. Rel. Grav., 20, 1047.

    Article  MathSciNet  ADS  Google Scholar 

  • Grebogi, C., Ott, E., Pelikan, S., and Yorke, J.A. (1984), Physica D, 13, 251.

    Article  MathSciNet  ADS  Google Scholar 

  • Hobill, D., Bernstein, D., Simkins, D. and Welge, M. (1989), in Proc. 12th Int. Conf. Gen. Rel. Grav., Boulder, Univ. of Colorado, abstracts p. 337.

    Google Scholar 

  • Khalatnikov, I.M. and Pokrovsky, V.L. (1972), in Magic without Magic, (ed. J. Klauder), W. H. Freeman, San Francisco, CA.

    Google Scholar 

  • Khalatnikov, I.M., Lifshitz, E.M., Khanin, K.M., Shchur, L.N., and Sinai, Ya. G. (1985), J. Stat. Phys., 38, 97.

    Article  MathSciNet  ADS  Google Scholar 

  • Kramer, D., Stephani, H., MacCallum, M.A.H. and Herlt, E. (1980), Exact Solutions of Einstein’s Field Equations, Deutscher Verlag der Wissenschaften, Berlin, and Cambridge University Press, Cambridge, UK.

    MATH  Google Scholar 

  • Ma, P.K-H. (1988), A Dynamical Systems Approach to the Oscillatory Singularity in Cosmology, M. Math. thesis, University of Waterloo.

    Google Scholar 

  • MacCallum, M.A.H. (1979), in Physics of the Expanding Universe, (ed. M. Demianski), Lecture Notes in Physics, Vol. 109, Springer-Verlag, Berlin and Heidelburg.

    Google Scholar 

  • Milnor, J. (1985), Commun. Math. Phys., 99, 177.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Misner, C.W. (1969), Phys. Rev. Lett, 22, 1071.

    Article  ADS  MATH  Google Scholar 

  • Misner, C.W. (1970), in Relativity, (eds., M. Carmelli, S. Fickler, and L. Witten), Plenum Publishing, New York, NY.

    Google Scholar 

  • Nemytskii, V.V. and Stepanov, V.V. (1960), Qualitative Theory of Differential Equations, Princeton University Press, Princeton, NY.

    MATH  Google Scholar 

  • Ryan, M. P., Jr. and Shepley, L.C. (1975), Homogeneous Relativistic Cosmologies, Princeton Univ. Press, Princeton, NJ.

    Google Scholar 

  • Shimada, I. and Nagashima, T. (1979), Prog. Theoret. Phys., 61, 1605.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Taub, A. (1951), Ann. Math., 53, 472.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Wainwright, J. and Hsu, L. (1989), Class. Quantum Grav., 6, 1409.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Zardecki, A. (1983), Phys. Rev., D28, 1235.

    MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ma, P.KH., Wainwright, J. (1994). A Dynamical Systems Approach to the Oscillatory Singularity in Bianchi Cosmologies. In: Hobill, D., Burd, A., Coley, A. (eds) Deterministic Chaos in General Relativity. NATO ASI Series, vol 332. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9993-4_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9993-4_25

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9995-8

  • Online ISBN: 978-1-4757-9993-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics