[go: up one dir, main page]

Skip to main content

FragXsiteDTI: Revealing Responsible Segments in Drug-Target Interaction with Transformer-Driven Interpretation

  • Conference paper
  • First Online:
Research in Computational Molecular Biology (RECOMB 2024)

Abstract

Drug-Target Interaction (DTI) prediction is vital for drug discovery, yet challenges persist in achieving model interpretability and optimizing performance. We propose a novel transformer-based model, FragXsiteDTI, that aims to address these challenges in DTI prediction. Notably, FragXsiteDTI is the first DTI model to simultaneously leverage drug molecule fragments and protein pockets. Our information-rich representations for both proteins and drugs offer a detailed perspective on their interaction. Inspired by the Perceiver IO framework, our model features a learnable latent array, initially interacting with protein binding site embeddings using cross-attention and later refined through self-attention and used as a query to the drug fragments in the drug’s cross-attention transformer block. This learnable query array serves as a mediator and enables seamless information translation, preserving critical nuances in drug-protein interactions. Our computational results on three benchmarking datasets demonstrate the superior predictive power of our model over several state-of-the-art models. We also show the interpretability of our model in terms of the critical components of both target proteins and drug molecules within drug-target pairs.

A. Khodabandeh Yalabadi and M. Yazdani-Jahromi—These authors contributed equally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Data Availability Statement

All datasets and all instructions and codes for our experiments are publicly available at Github.

References

  1. Baptista, D., Correia, J., Pereira, B., Rocha, M.: Evaluating molecular representations in machine learning models for drug response prediction and interpretability. J. Integr. Bioinform. 19(3), 20220006 (2022)

    Article  Google Scholar 

  2. Chen, L., et al.: TransformerCPI: improving compound-protein interaction prediction by sequence-based deep learning with self-attention mechanism and label reversal experiments. Bioinformatics 36(16), 4406–4414 (2020)

    Google Scholar 

  3. Cheng, Z., Yan, C., Wu, F.X., Wang, J.: Drug-target interaction prediction using multi-head self-attention and graph attention network. IEEE/ACM Trans. Comput. Biol. Bioinf. 19(4), 2208–2218 (2021)

    Article  Google Scholar 

  4. Degen, J., Wegscheid-Gerlach, C., Zaliani, A., Rarey, M.: On the art of compiling and using ‘drug-like’ chemical fragment spaces. ChemMedChem Chem. Enabling Drug Discov. 3(10), 1503–1507 (2008)

    Google Scholar 

  5. Diao, Y., Hu, F., Shen, Z., Li, H.: MacFrag: segmenting large-scale molecules to obtain diverse fragments with high qualities. Bioinformatics 39(1), btad012 (2023)

    Google Scholar 

  6. Du, J., Zhang, S., Wu, G., Moura, J.M., Kar, S.: Topology adaptive graph convolutional networks. arXiv preprint arXiv:1710.10370 (2017)

  7. Gomes, J., Ramsundar, B., Feinberg, E.N., Pande, V.S.: Atomic convolutional networks for predicting protein-ligand binding affinity. arXiv preprint arXiv:1703.10603 (2017)

  8. Huang, K., Xiao, C., Glass, L.M., Sun, J.: MolTrans: molecular interaction transformer for drug-target interaction prediction. Bioinformatics 37(6), 830–836 (2021)

    Article  Google Scholar 

  9. Jaegle, A., et al.: Perceiver IO: a general architecture for structured inputs & outputs. arXiv preprint arXiv:2107.14795 (2021)

  10. Karimi, M., Wu, D., Wang, Z., Shen, Y.: DeepAffinity: interpretable deep learning of compound-protein affinity through unified recurrent and convolutional neural networks. Bioinformatics 35(18), 3329–3338 (2019)

    Article  Google Scholar 

  11. Lee, I., Keum, J., Nam, H.: DeepConv-DTI: prediction of drug-target interactions via deep learning with convolution on protein sequences. PLoS Comput. Biol. 15(6), e1007129 (2019)

    Article  Google Scholar 

  12. Lee, I., Nam, H.: Identification of drug-target interaction by a random walk with restart method on an interactome network. BMC Bioinformatics 19(8), 9–18 (2018)

    Google Scholar 

  13. Li, Q., Han, Z., Wu, X.M.: Deeper insights into graph convolutional networks for semi-supervised learning. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32 (2018)

    Google Scholar 

  14. Lim, J., Ryu, S., Park, K., Choe, Y.J., Ham, J., Kim, W.Y.: Predicting drug-target interaction using a novel graph neural network with 3D structure-embedded graph representation. J. Chem. Inf. Model. 59(9), 3981–3988 (2019)

    Article  Google Scholar 

  15. Liu, H., Sun, J., Guan, J., Zheng, J., Zhou, S.: Improving compound-protein interaction prediction by building up highly credible negative samples. Bioinformatics 31(12), i221–i229 (2015). https://doi.org/10.1093/bioinformatics/btv256

    Article  Google Scholar 

  16. Nguyen, T., Le, H., Quinn, T.P., Nguyen, T., Le, T.D., Venkatesh, S.: GraphDTA: predicting drug-target binding affinity with graph neural networks. Bioinformatics 37(8), 1140–1147 (2021)

    Article  Google Scholar 

  17. Öztürk, H., Özgür, A., Ozkirimli, E.: DeepDTA: deep drug-target binding affinity prediction. Bioinformatics 34(17), i821–i829 (2018)

    Article  Google Scholar 

  18. Pan, Y., Zhang, Y., Zhang, J., Lu, M.: CSDTI: an interpretable cross-attention network with GNN-based drug molecule aggregation for drug-target interaction prediction. Appl. Intell., 1–14 (2023)

    Google Scholar 

  19. Pettersen, E.F., et al.: UCSF Chimera-a visualization system for exploratory research and analysis. J. Comput. Chem. 25(13), 1605–1612 (2004)

    Article  Google Scholar 

  20. Preto, A.J., Matos-Filipe, P., Mourão, J., Moreira, I.S.: SYNPRED: prediction of drug combination effects in cancer using full-agreement synergy metrics and deep learning. GigaScience 11, giac087 (2022)

    Google Scholar 

  21. Ragoza, M., Hochuli, J., Idrobo, E., Sunseri, J., Koes, D.R.: Protein-ligand scoring with convolutional neural networks. J. Chem. Inf. Model. 57(4), 942–957 (2017)

    Article  Google Scholar 

  22. Saberi Fathi, S.M., Tuszynski, J.A.: A simple method for finding a protein’s ligand-binding pockets. BMC Struct. Biol. 14(1), 18 (2014). https://doi.org/10.1186/1472-6807-14-18

    Article  Google Scholar 

  23. Son, J., Kim, D.: Development of a graph convolutional neural network model for efficient prediction of protein-ligand binding affinities. PLoS ONE 16(4), e0249404 (2021)

    Article  Google Scholar 

  24. Stepniewska-Dziubinska, M.M., Zielenkiewicz, P., Siedlecki, P.: Development and evaluation of a deep learning model for protein-ligand binding affinity prediction. Bioinformatics 34(21), 3666–3674 (2018)

    Article  Google Scholar 

  25. Tang, Y.: Deep learning in drug discovery: applications and limitations. Frontiers Comput. Intell. Syst. 3(2), 118–123 (2023)

    Article  Google Scholar 

  26. Torng, W., Altman, R.B.: Graph convolutional neural networks for predicting drug-target interactions. J. Chem. Inf. Model. 59(10), 4131–4149 (2019). https://doi.org/10.1021/acs.jcim.9b00628

    Article  Google Scholar 

  27. Trott, O., Olson, A.J.: AutoDock vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 31(2), 455–461 (2010)

    Article  Google Scholar 

  28. Tsubaki, M., Tomii, K., Sese, J.: Compound-protein interaction prediction with end-to-end learning of neural networks for graphs and sequences. Bioinformatics 35(2), 309–318 (2019)

    Article  Google Scholar 

  29. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  30. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.: Graph attention networks. arXiv preprint arXiv:1710.10903 (2017)

  31. Wallach, I., Dzamba, M., Heifets, A.: AtomNet: a deep convolutional neural network for bioactivity prediction in structure-based drug discovery. arXiv preprint arXiv:1510.02855 (2015)

  32. Wan, F., et al.: DeepCPI: a deep learning-based framework for large-scale in silico drug screening. Genomics Proteomics Bioinf. 17(5), 478–495 (2019)

    Article  Google Scholar 

  33. Wang, L., Zhou, Y., Chen, Q.: AMMVF-DTI: a novel model predicting drug-target interactions based on attention mechanism and multi-view fusion. Int. J. Mol. Sci. 24(18), 14142 (2023)

    Article  Google Scholar 

  34. Wei, L., Long, W., Wei, L.: MDL-CPI: multi-view deep learning model for compound-protein interaction prediction. Methods 204, 418–427 (2022)

    Article  Google Scholar 

  35. Wishart, D.S., et al.: DrugBank: a knowledgebase for drugs, drug actions and drug targets. Nucleic Acids Res. 36(suppl_1), D901–D906 (2008)

    Google Scholar 

  36. Yang, J., Li, Z., Wu, W., Yu, S., Chu, Q., Zhang, Q.: Deep learning can identify explainable reasoning paths of mechanism of drug action for drug repurposing from multilayer biological network. Briefings Bioinf. 23(6), bbac469 (2022)

    Google Scholar 

  37. Yazdani-Jahromi, M., et al.: AttentionSiteDTI: an interpretable graph-based model for drug-target interaction prediction using NLP sentence-level relation classification. Briefings Bioinf. 23(4), bbac272 (2022)

    Google Scholar 

  38. Yousefi, N., et al.: BindingSite-AugmentedDTA: enabling a next-generation pipeline for interpretable prediction models in drug repurposing. Briefings Bioinf. 24(3), bbad136 (2023). https://doi.org/10.1093/bib/bbad136

  39. Yuan, Q., Gao, J., Wu, D., Zhang, S., Mamitsuka, H., Zhu, S.: DrugE-Rank: improving drug-target interaction prediction of new candidate drugs or targets by ensemble learning to rank. Bioinformatics 32(12), i18–i27 (2016)

    Article  Google Scholar 

  40. Zheng, S., Li, Y., Chen, S., Xu, J., Yang, Y.: Predicting drug-protein interaction using quasi-visual question answering system. Nat. Mach. Intell. 2(2), 134–140 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ozlem Ozmen Garibay .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Khodabandeh Yalabadi, A., Yazdani-Jahromi, M., Yousefi, N., Tayebi, A., Abdidizaji, S., Garibay, O.O. (2024). FragXsiteDTI: Revealing Responsible Segments in Drug-Target Interaction with Transformer-Driven Interpretation. In: Ma, J. (eds) Research in Computational Molecular Biology. RECOMB 2024. Lecture Notes in Computer Science, vol 14758. Springer, Cham. https://doi.org/10.1007/978-1-0716-3989-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3989-4_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-1-0716-3988-7

  • Online ISBN: 978-1-0716-3989-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics