[go: up one dir, main page]

Skip to main content

Therapeutic Antibodies: An Overview

  • Protocol
  • First Online:
Therapeutic Antibodies

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2313))

Abstract

Polyclonal immunoglobulin (Ig) preparations have been used for several decades for treatment of primary and secondary immunodeficiencies and for treatment of some infections and intoxications. This has demonstrated the importance of Igs, also called antibodies (Abs) for prevention and elimination of infections. Moreover, elucidation of the structure and functions of Abs has suggested that they might be useful for targeted treatment of several diseases, including cancers and autoimmune diseases. The development of technologies for production of specific monoclonal Abs (MAbs) in large amounts has led to the production of highly effective therapeutic antibodies (TAbs), a collective term for MAbs (MAbs) with demonstrated clinical efficacy in one or more diseases. The number of approved TAbs is currently around hundred, and an even larger number is under development, including several engineered and modified Ab formats. The use of TAbs has provided new treatment options for many severe diseases, but prediction of clinical effect is difficult, and many patients eventually lose effect, possibly due to development of Abs to the TAbs or to other reasons. The therapeutic efficacy of TAbs can be ascribed to one or more effects, including binding and neutralization of targets, direct cytotoxicity, Ab-dependent complement-dependent cytotoxicity, Ab-dependent cellular cytotoxicity or others. The therapeutic options for TAbs have been expanded by development of several new formats of TAbs, including bispecific Abs, single domain Abs, TAb-drug conjugates, and the use of TAbs for targeted activation of immune cells. Most promisingly, current research and development can be expected to increase the number of clinical conditions, which may benefit from TAbs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Murphy KP (2012) Immunobiology 8th Ed. Garland Science, NY, USA

    Google Scholar 

  2. Lu LL, Suscovich TJ, Fortune SM, Alter G (2018) Beyond binding: antibody effector functions in infectious diseases. Nat Rev Immunol 18:46–61

    Article  CAS  PubMed  Google Scholar 

  3. Panda S, Ding JL (2015) Natural antibodies bridge innate and adaptive immunity. J Immunol 194:13–20

    Article  CAS  PubMed  Google Scholar 

  4. Heyman B (2014) Antibodies as natural adjuvants. Curr Top Microbiol Immunol 382:201–219

    CAS  PubMed  Google Scholar 

  5. Maibom-Thomsen SL, Trier NH, Holm BE, Hansen KB, Rasmussen MI, Chailyan A, Marcatili P, Højrup P, Houen G (2019) Immunoglobulin G structure and rheumatoid factor epitopes. PLoS One 14:e0217624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Xu Z, Zan H, Pone EJ, Mai T, Casali P (2012) Immunoglobulin class-switch DNA recombination: induction, targeting and beyond. Nat Rev Immunol 12:517–531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hwang JK, Alt FW, Yeap LS (2015) Related mechanisms of antibody somatic Hypermutation and class switch recombination. Microbiol Spectr 3:MDNA3-0037-2014

    PubMed  Google Scholar 

  8. Cerutti A (2008) The regulation of IgA class switching. Nat Rev Immunol 8:421–434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Eisen HN (2014) Affinity enhancement of antibodies: how low-affinity antibodies produced early in immune responses are followed by high-affinity antibodies later and in memory B cell responses. Cancer Immunol Res 2:381–392

    Article  CAS  PubMed  Google Scholar 

  10. Pone EJ, Zan H, Zhang J, Al-Qahtani A, Xu Z, Casali P (2010) Toll-like receptors and B cell receptors synergize to induce immunoglobulin class-switch DNA recombination: relevance to microbial antibody responses. Crit Rev Immunol 30:1–29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. D'Amelio E, Salemi S, D'Amelio R (2016) Anti-infectious human vaccination in historical perspective. Int Rev Immunol 35:260–290

    Article  CAS  PubMed  Google Scholar 

  12. Hajj Hussein I, Chams N, Chams S, El Sayegh S, Badran R, Raad M, Gerges-Geagea A, Leone A, Jurjus A (2015) Vaccines through centuries: major cornerstones of Global Health. Front Public Health 3:269

    Article  PubMed  PubMed Central  Google Scholar 

  13. Patel SY, Carbone J, Jolles S (2019) The expanding field of secondary antibody deficiency: causes, diagnosis, and management. Front Immunol 10:33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wood PM (2010) Primary antibody deficiency syndromes. Curr Opin Hematol 17:356–361

    Article  PubMed  Google Scholar 

  15. Pecoraro A, Crescenzi L, Granata F, Genovese A, Spadaro G (2017) Immunoglobulin replacement therapy in primary and secondary antibody deficiency: the correct clinical approach. Int Immunopharmacol 52:136–142

    Article  CAS  PubMed  Google Scholar 

  16. Arnson Y, Shoenfeld Y, Amital H (2009) Intravenous immunoglobulin therapy for autoimmune diseases. Autoimmunity 42:553–560

    Article  CAS  PubMed  Google Scholar 

  17. Guo Y, Tian X, Wang X, Xiao Z (2018) Adverse effects of immunoglobulin therapy. Front Immunol 9:1299

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Hsing LC, Kim JY, Kwon JS, Shin EC, Kim SH (2019) Successful treatment of fulminant hepatitis due to varicella zoster virus using immunoglobulin in a kidney transplant patient. Infect Chemother 51:310–314

    Article  PubMed  Google Scholar 

  19. Nobre FA, Gonzalez IG, Simão RM, de Moraes Pinto MI, Costa-Carvalho BT (2014) Antibody levels to tetanus, diphtheria, measles and varicella in patients with primary immunodeficiency undergoing intravenous immunoglobulin therapy: a prospective study. BMC Immunol 15:26

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Zipursky A, Bhutani VK, Odame I (2018) Rhesus disease: a global prevention strategy. Lancet Child Adolesc Health 2:536–542

    Article  PubMed  Google Scholar 

  21. Laursen IA, Blou L, Sullivan JS, Bang P, Balstrup F, Houen G (2014) Development, manufacturing and characterization of a highly purified, liquid immunoglobulin G preparation from human plasma. Transfus Med Hemother 41:205–212

    Article  PubMed  PubMed Central  Google Scholar 

  22. Siddiqui S, Cox J, Herzig R, Palaniyandi S, Hildebrandt GC, Munker R (2019) Anti-thymocyte globulin in haematology: recent developments. Indian J Med Res 150:221–227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. van der Zwan M, Clahsen-Van Groningen MC, van den Hoogen MWF, Kho MML, Roodnat JI, Mauff KAL, Roelen DL, van Agteren M, Baan CC, Hesselink DA (2020) Comparison of Alemtuzumab and anti-thymocyte globulin treatment for acute kidney allograft rejection. Front Immunol 11:1332

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Squaiella-Baptistão CC, Magnoli FC, Marcelino JR, Sant'Anna OA, Tambourgi DV (2018) Quality of horse F(ab')(2) antitoxins and anti-rabies immunoglobulins: protein content and anticomplementary activity. J Venom Anim Toxins Incl Trop Dis 24:16

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Griese SE, Kisselburgh HM, Bartenfeld MT, Thomas E, Rao AK, Sobel J, Dziuban EJ (2017) Pediatric botulism and use of equine botulinum antitoxin in children: a systematic review. Clin Infect Dis 66:S17–S29

    Article  PubMed  Google Scholar 

  26. Robinson RF, Nahata MC (2003) Management of botulism. Ann Pharmacother 37:127–131

    Article  PubMed  Google Scholar 

  27. Flanagan RJ, Jones AL (2004) Fab antibody fragments: some applications in clinical toxicology. Drug Saf 27:1115–1133

    Article  CAS  PubMed  Google Scholar 

  28. Gómez-Betancur I, Gogineni V, Salazar-Ospina A, León F (2019) Perspective on the therapeutics of anti-Snake venom. Molecules 24:3276

    Article  PubMed Central  CAS  Google Scholar 

  29. Pucca MB, Cerni FA, Janke R, Bermúdez-Méndez E, Ledsgaard L, Barbosa JE, Laustsen AH (2019) History of envenoming therapy and current perspectives. Front Immunol 10:1598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Strebhardt K, Ullrich A (2008) Paul Ehrlich's magic bullet concept: 100 years of progress. Nat Rev Cancer 8:473–480

    Article  CAS  PubMed  Google Scholar 

  31. Köhler G, Milstein C (2005) Continuous cultures of fused cells secreting antibody of predefined specificity. 1975. J Immunol 174:2453–2455

    PubMed  Google Scholar 

  32. Hanack K, Messerschmidt K, Listek M (2016) Antibodies and selection of monoclonal antibodies. Adv Exp Med Biol 917:11–22

    Article  CAS  PubMed  Google Scholar 

  33. Posner J, Barrington P, Brier T, Datta-Mannan A (2019) Monoclonal antibodies: past, present and future. Handb Exp Pharmacol 260:81–141

    Article  CAS  PubMed  Google Scholar 

  34. Kumar R, Parray HA, Shrivastava T, Sinha S, Luthra K (2019) Phage display antibody libraries: a robust approach for generation of recombinant human monoclonal antibodies. Int J Biol Macromol 135:907–918

    Article  CAS  PubMed  Google Scholar 

  35. Kennedy PJ, Oliveira C, Granja PL, Sarmento B (2018) Monoclonal antibodies: technologies for early discovery and engineering. Crit Rev Biotechnol 38:394–408

    Article  CAS  PubMed  Google Scholar 

  36. Shukla AA, Thömmes J (2010) Recent advances in large-scale production of monoclonal antibodies and related proteins. Trends Biotechnol 28:253–261

    Article  CAS  PubMed  Google Scholar 

  37. Smith SL (1996) Ten years of Orthoclone OKT3 (muromonab-CD3): a review. J Transpl Coord 6:109–119

    CAS  PubMed  Google Scholar 

  38. Ahmadzadeh V, Farajnia S, Feizi MA, Nejad RA (2014) Antibody humanization methods for development of therapeutic applications. Monoclon Antib Immunodiagn Immunother 33:67–73

    Article  CAS  PubMed  Google Scholar 

  39. Safdari Y, Farajnia S, Asgharzadeh M, Khalili M (2013) Antibody humanization methods—a review and update. Biotechnol Genet Eng Rev 29:175–186

    Article  CAS  PubMed  Google Scholar 

  40. Andreano E, Seubert A, Rappuoli R (2019) Human monoclonal antibodies for discovery, therapy, and vaccine acceleration. Curr Opin Immunol 59:130–134

    Article  CAS  PubMed  Google Scholar 

  41. Waldmann H (2019) Human monoclonal antibodies: the benefits of humanization. Methods Mol Biol 1904:1–10

    Article  CAS  PubMed  Google Scholar 

  42. Lushova AA, Biazrova MG, Prilipov AG, Sadykova GK, Kopylov TA, Filatov AV (2017) Next-generation techniques for discovering human monoclonal antibodies. Mol Biol 51:782–787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lu RM, Hwang YC, Liu IJ, Lee CC, Tsai HZ, Li HJ, Wu HC (2020) Development of therapeutic antibodies for the treatment of diseases. J Biomed Sci 27:1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Salemi S, Markovic M, Martini G, D'Amelio R (2015) The expanding role of therapeutic antibodies. Int Rev Immunol 34:202–264

    Article  CAS  PubMed  Google Scholar 

  45. Hooft van Huijsduijnen R, Kojima S, Carter D, Okabe H, Sato A, Akahata W, Wells TNC, Katsuno K (2020) Reassessing therapeutic antibodies for neglected and tropical diseases. PLoS Negl Trop Dis 14:e0007860

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Guo J, Xiao Y, Iyer R, Lu X, Lake M, Ladror U, Harlan J, Samanta T, Tomlinson M, Bukofzer G, Donawho C, Shoemaker A, Huang TH (2019) Empowering therapeutic antibodies with IFN-α for cancer immunotherapy. PLoS One 14:e0219829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Sondermann P, Szymkowski DE (2016) Harnessing Fc receptor biology in the design of therapeutic antibodies. Curr Opin Immunol 40:78–87

    Article  CAS  PubMed  Google Scholar 

  48. Yu J, Song Y, Tian W (2020) How to select IgG subclasses in developing anti-tumor therapeutic antibodies. J Hematol Oncol 13:45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Diao L, Meibohm B (2018) Pharmacometric applications and challenges in the development of therapeutic antibodies in Immuno-oncology. Curr Pharmacol Rep 4:285–291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Fonseca MHG, Furtado GP, Bezerra MRL, Pontes LQ, Fernandes CFC (2018) Boosting half-life and effector functions of therapeutic antibodies by Fc-engineering: An interaction-function review. Int J Biol Macromol 119:306–311

    Article  CAS  PubMed  Google Scholar 

  51. Chaisri U, Chaicumpa W (2018) Evolution of therapeutic antibodies, influenza virus biology, influenza, and influenza immunotherapy. Biomed Res Int 2018:9747549

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Lee A, Sun S, Sandler A, Hoang T (2018) Recent progress in therapeutic antibodies for cancer immunotherapy. Curr Opin Chem Biol 44:56–65

    Article  CAS  PubMed  Google Scholar 

  53. Schürch CM (2018) Therapeutic antibodies for myeloid neoplasms-current developments and future directions. Front Oncol 8:152

    Article  PubMed  PubMed Central  Google Scholar 

  54. Marshall MJE, Stopforth RJ, Cragg MS (2017) Therapeutic antibodies: what have we learnt from targeting CD20 and where are we going? Front Immunol 8:1245

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Sécher T, Guilleminault L, Reckamp K, Amanam I, Plantier L, Heuzé-Vourc'h N (2018) Therapeutic antibodies: a new era in the treatment of respiratory diseases? Pharmacol Ther 189:149–172

    Article  PubMed  CAS  Google Scholar 

  56. Goupille P (2016) Immunogenicity of biopharmaceuticals: which consequences during the treatment of rheumatoid arthritis? Rev Med Interne 37:343–349

    Article  CAS  PubMed  Google Scholar 

  57. Fernandes JC (2018) Therapeutic application of antibody fragments in autoimmune diseases: current state and prospects. Drug Discov Today 23:1996–2002

    Article  CAS  PubMed  Google Scholar 

  58. Hagemeyer CE, von Zur MC, von Elverfeldt D, Peter K (2009) Single-chain antibodies as diagnostic tools and therapeutic agents. Thromb Haemost 101:1012–1019

    Article  CAS  PubMed  Google Scholar 

  59. Beck A, Wagner-Rousset E, Wurch T, Corvaia N (2009) Therapeutic antibodies and related products: choosing the right structure for success. Med Sci (Paris) 25:1024–1032

    Article  Google Scholar 

  60. Lai Y, Dong C (2016) Therapeutic antibodies that target inflammatory cytokines in autoimmune diseases. Int Immunol 28:181–188

    Article  CAS  PubMed  Google Scholar 

  61. Willrich MA, Murray DL, Snyder MR (2015) Tumor necrosis factor inhibitors: clinical utility in autoimmune diseases. Transl Res 165:270–282

    Article  CAS  PubMed  Google Scholar 

  62. Chapman MA, Charles D, Loaiza-Bonilla A (2017) The role of Biosimilars in patient access to therapeutic antibodies for immune mediated inflammatory diseases. Curr Pharm Des 23:6779–6783

    Article  CAS  PubMed  Google Scholar 

  63. Bellinvia S, Edwards CJ (2020) Explaining biosimilars and how reverse engineering plays a critical role in their development. Expert Opin Drug Discov 27:1–7

    Google Scholar 

  64. Barbier L, Ebbers HC, Declerck P, Simoens S, Vulto AG, Huys I (2020) The efficacy, safety, and immunogenicity of switching between reference biopharmaceuticals and biosimilars: a systematic review. Clin Pharmacol Ther 108:734–755

    Article  PubMed  PubMed Central  Google Scholar 

  65. Barbosa MD, Kumar S, Loughrey H, Singh SK (2012) Biosimilars and biobetters as tools for understanding and mitigating the immunogenicity of biotherapeutics. Drug Discov Today 17:1282–1288

    Article  CAS  PubMed  Google Scholar 

  66. Barbosa MD (2011) Immunogenicity of biotherapeutics in the context of developing biosimilars and biobetters. Drug Discov Today 16:345–353

    Article  CAS  PubMed  Google Scholar 

  67. Ponziani S, Di Vittorio G, Pitari G, Cimini AM, Ardini M, Gentile R, Iacobelli S, Sala G, Capone E, Flavell DJ, Ippoliti R, Giansanti F (2020) Antibody-drug conjugates: the new frontier of chemotherapy. Int J Mol Sci 21:E5510

    Article  PubMed  CAS  Google Scholar 

  68. Boni V, Sharma MR, Patnaik A (2020) The resurgence of antibody drug conjugates in Cancer therapeutics: novel targets and payloads. Am Soc Clin Oncol Educ Book 40:1–17

    PubMed  Google Scholar 

  69. Chau CH, Steeg PS, Figg WD (2019) Antibody-drug conjugates for cancer. Lancet 394:793–804

    Article  CAS  PubMed  Google Scholar 

  70. Yi JH, Kim SJ, Kim WS (2017) Brentuximab vedotin: clinical updates and practical guidance. Blood Res 52:243–253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Fabbri A, Cencini E, Gozzetti A, Schiattone L, Bocchia M (2017) Therapeutic use of Brentuximab Vedotin in CD30+ hematologic malignancies. Anti Cancer Agents Med Chem 17:886–895

    Article  CAS  Google Scholar 

  72. Spiess C, Zhai Q, Carte PJ (2015) Alternative molecular formats and therapeutic applications for bispecific antibodies. Mol Immunol 67:95–106

    Article  CAS  PubMed  Google Scholar 

  73. Sifniotis V, Cruz E, Eroglu B, Kayser V (2019) Current advancements in addressing key challenges of therapeutic antibody design, manufacture, and formulation. Antibodies (Basel) 8:36

    Article  CAS  Google Scholar 

  74. Leung D, Wurst JM, Liu T, Martinez RM, Datta-Mannan A, Feng Y (2020) Antibody conjugates-recent advances and future innovations. Antibodies (Basel) 9:2

    Article  CAS  Google Scholar 

  75. Elgundi Z, Reslan M, Cruz E, Sifniotis V, Kayser V (2017) The state-of-play and future of antibody therapeutics. Adv Drug Deliv Rev 122:2–19

    Article  CAS  PubMed  Google Scholar 

  76. Li H, Er Saw P, Song E (2020) Challenges and strategies for next-generation bispecific antibody-based antitumor therapeutics. Cell Mol Immunol 17:451–461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Zhao Q (2020) Bispecific antibodies for autoimmune and inflammatory diseases: clinical progress to date. BioDrugs 34:111–119

    Article  PubMed  Google Scholar 

  78. Shim H (2020) Bispecific antibodies and antibody-drug conjugates for cancer therapy: technological considerations. Biomol Ther 10:360

    CAS  Google Scholar 

  79. Schmid AS, Neri D (2019) Advances in antibody engineering for rheumatic diseases. Nat Rev Rheumatol 15:197–207

    Article  PubMed  Google Scholar 

  80. Ministro J, Manuel AM, Goncalves J (2020) Therapeutic antibody engineering and selection strategies. Adv Biochem Eng Biotechnol 171:55–86

    CAS  PubMed  Google Scholar 

  81. Haraya K, Tachibana T, Igawa T (2019) Improvement of pharmacokinetic properties of therapeutic antibodies by antibody engineering. Drug Metab Pharmacokinet 34:25–41

    Article  CAS  PubMed  Google Scholar 

  82. Chen S, Li L, Zhang F, Wang Y, Hu Y, Zhao L (2019) Immunoglobulin gamma-like therapeutic bispecific antibody formats for tumor therapy. J Immunol Res 2019:4516041

    Article  PubMed  PubMed Central  Google Scholar 

  83. Acheampong DO (2019) Bispecific antibody (bsAb) construct formats and their application in cancer therapy. Protein Pept Lett 26:479–493

    Article  CAS  PubMed  Google Scholar 

  84. Deonarain MP, Yahioglu G, Stamati I, Marklew J (2015) Emerging formats for next-generation antibody drug conjugates. Expert Opin Drug Discov 10:463–481

    Article  CAS  PubMed  Google Scholar 

  85. le Besnerais M, Veyradier A, Benhamou Y, Coppo P (2019) Caplacizumab: a change in the paradigm of thrombotic thrombocytopenic purpura treatment. Expert Opin Biol Ther 19:1127–1134

    Article  PubMed  CAS  Google Scholar 

  86. Khodabakhsh F, Behdani M, Rami A, Kazemi-Lomedasht F (2018) Single-domain antibodies or Nanobodies: a class of next-generation antibodies. Int Rev Immunol 37:316–322

    Article  CAS  PubMed  Google Scholar 

  87. Ahmad ZA, Yeap SK, Ali AM, Ho WY, Alitheen NB, Hamid M (2012) scFv antibody: principles and clinical application. Clin Dev Immunol 2012:980250

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Weisser NE, Hall JC (2009) Applications of single-chain variable fragment antibodies in therapeutics and diagnostics. Biotechnol Adv 27:502–520

    Article  CAS  PubMed  Google Scholar 

  89. Yannuzzi NA, Freund KB (2019) Brolucizumab: evidence to date in the treatment of neovascular age-related macular degeneration. Clin Ophthalmol 13:1323–1329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Deeks ED (2016) Certolizumab Pegol: a review in inflammatory autoimmune diseases. BioDrugs 30:607–617

    Article  CAS  PubMed  Google Scholar 

  91. Miyares MA, Kuyumjian Y, Eaves S, Dollard E (2015) Idarucizumab, a humanised, monoclonal antibody fragment for immediate reversal of dabigatran. J Pharm Pract 28:548–554

    Article  PubMed  Google Scholar 

  92. Parikh D, Juergens CP (2011) Abciximab as an adjunctive therapy for patients undergoing percutaneous coronary interventions. Expert Opin Biol Ther 11:235–246

    Article  CAS  PubMed  Google Scholar 

  93. Stewart MW (2017) A review of Ranibizumab for the treatment of diabetic retinopathy. Ophthalmol Ther 6:33–47

    Article  PubMed  PubMed Central  Google Scholar 

  94. Wang Q, Chen Y, Park J, Liu X, Hu Y, Wang T, McFarland K, Betenbaugh MJ (2019) Design and production of bispecific antibodies. Antibodies (Basel) 8:43

    Article  CAS  Google Scholar 

  95. Sebastian M, Kuemmel A, Schmidt M, Schmittel A (2009) Catumaxomab: a bispecific trifunctional antibody. Drugs Today (Barc) 45:589–597

    Article  CAS  Google Scholar 

  96. Blair HA (2019) Emicizumab: a review in Haemophilia A. Drugs 79:1697–1707

    Article  PubMed  Google Scholar 

  97. Liu H, Saxena A, Sidhu SS, Wu D (2017) Fc engineering for developing therapeutic bispecific antibodies and novel scaffolds. Front Immunol 8:38

    PubMed  PubMed Central  Google Scholar 

  98. Burt R, Warcel D, Fielding AK (2019) Blinatumomab, a bispecific B-cell and T-cell engaging antibody, in the treatment of B-cell malignancies. Hum Vaccin Immunother 15:594–602

    Article  PubMed  Google Scholar 

  99. Mastrangeli R, Palinsky W, Bierau H (2019) Glycoengineered antibodies: towards the next-generation of immunotherapeutics. Glycobiology 29:199–210

    Article  CAS  PubMed  Google Scholar 

  100. Ministro J, Manuel AM, Goncalves J (2020) Therapeutic antibody engineering and selection strategies. Adv Biochem Eng Biotechnol 171:55–86

    CAS  PubMed  Google Scholar 

  101. Ureshino H, Kamachi K, Kimura S (2019) Mogamulizumab for the treatment of adult T-cell leukemia/lymphoma. Clin Lymphoma Myeloma Leuk 19:326–331

    Article  PubMed  Google Scholar 

  102. Gagez AL, Cartron G (2014) Obinutuzumab: a new class of anti-CD20 monoclonal antibody. Curr Opin Oncol 26:484–491

    Article  CAS  PubMed  Google Scholar 

  103. Edelmann J, Gribben JG (2016) Obinutuzumab for the treatment of indolent lymphoma. Future Oncol 12:1769–1781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Migden MR, Rischin D, Schmults CD, Guminski A, Hauschild A, Lewis KD, Chung CH, Hernandez-Aya L, Lim AM, Chang ALS, Rabinowits G, Thai AA, Dunn LA, Hughes BGM, Khushalani NI, Modi B, Schadendorf D, Gao B, Seebach F, Li S, Li J, Mathias M, Booth J, Mohan K, Stankevich E, Babiker HM, Brana I, Gil-Martin M, Homsi J, Johnson ML, Moreno V, Niu J, Owonikoko TK, Papadopoulos KP, Yancopoulos GD, Lowy I, Fury MG (2018) PD-1 blockade with Cemiplimab in advanced cutaneous squamous-cell carcinoma. N Engl J Med 379:341–351

    Article  CAS  PubMed  Google Scholar 

  105. Carter P (2001) Improving the efficacy of antibody-based cancer therapies. Nat Rev Cancer 1:118–129

    Article  CAS  PubMed  Google Scholar 

  106. Golay J, Introna M (2012) Mechanism of action of therapeutic monoclonal antibodies: promises and pitfalls of in vitro and in vivo assays. Arch Biochem Biophys 526:146–153

    Article  CAS  PubMed  Google Scholar 

  107. Redman JM, Hill EM, AlDeghaither D, Weiner LM (2015) Mechanisms of action of therapeutic antibodies for cancer. Mol Immunol 67:28–45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Zhu C, Song Z, Wang A, Srinivasan S, Yang G, Greco R, Theilhaber J, Shehu E, Wu L, Yang ZY, Passe-Coutrin W, Fournier A, Tai YT, Anderson KC, Wiederschain D, Bahjat K, Adrián FJ, Chiron M (2020) Isatuximab acts through fc-dependent, independent, and direct pathways to kill multiple myeloma cells. Front Immunol 11:1771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Kumar A, Planchais C, Fronzes R, Mouquet H, Reyes N (2020) Binding mechanisms of therapeutic antibodies to human CD20. Science 369:793–799

    Article  CAS  PubMed  Google Scholar 

  110. Maloney DG, Smith B, Rose A (2002) Rituximab: mechanism of action and resistance. Semin Oncol 29:2–9

    Article  CAS  PubMed  Google Scholar 

  111. Subedi S, Gong Y, Chen Y, Shi Y (2019) Infliximab and biosimilar infliximab in psoriasis: efficacy, loss of efficacy, and adverse events. Drug Des Devel Ther 13:2491–2502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Zhang QW, Shen J, Zheng Q, Ran ZH (2019) Loss of response to scheduled infliximab therapy for Crohn’s disease in adults: a systematic review and meta-analysis. J Dig Dis 20:65–72

    Article  PubMed  Google Scholar 

  113. Hindryckx P, Novak G, Vande Casteele N, Khanna R, Laukens D, Jairath V, Feagan BG (2017) Incidence, prevention and Management of Anti-Drug Antibodies against Therapeutic Antibodies in inflammatory bowel disease: a practical overview. Drugs 77:363–377

    Article  CAS  PubMed  Google Scholar 

  114. Bloem K, Hernández-Breijo B, Martínez-Feito A, Rispens T (2017) Immunogenicity of therapeutic antibodies: monitoring antidrug antibodies in a clinical context. Ther Drug Monit 39:327–332

    Article  CAS  PubMed  Google Scholar 

  115. Doevendans E, Schellekens H (2019) Immunogenicity of innovative and biosimilar monoclonal antibodies. Antibodies 8:21

    Article  CAS  PubMed Central  Google Scholar 

  116. Özenver N, Efferth T (2020) Immunotoxicity of therapeutic antibodies and nanoparticles. Crit Rev Immunol 40:53–74

    Article  PubMed  Google Scholar 

  117. Hudson PJ, Kortt AA (1999) High avidity scFv multimers; diabodies and triabodies. J Immunol Methods 231:177–189

    Article  CAS  PubMed  Google Scholar 

  118. Scott LJ (2014) Etanercept: a review of its use in autoimmune inflammatory diseases. Drugs 74:1379–1410

    Article  CAS  PubMed  Google Scholar 

  119. Guo J, Xiao Y, Iyer R, Lu X, Lake M, Ladror U, Harlan J, Samanta T, Tomlinson M, Bukofzer G, Donawho C, Shoemaker A, Huang TH (2019) Empowering therapeutic antibodies with IFN-α for cancer immunotherapy. PLoS One 14:e0219829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Young PA, Morrison SL, Timmerman JM (2014) Antibody-cytokine fusion proteins for treatment of cancer: engineering cytokines for improved efficacy and safety. Semin Oncol 41:623–636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Paci A, Desnoyer A, Delahousse J, Blondel L, Maritaz C, Chaput N, Mir O, Broutin S (2020) Pharmacokinetic/pharmacodynamic relationship of therapeutic monoclonal antibodies used in oncology: part 1, monoclonal antibodies, antibody-drug conjugates and bispecific T-cell engagers. Eur J Cancer 128:107–118

    Article  CAS  PubMed  Google Scholar 

  122. Huehls AM, Coupet TA, Sentman CL (2015) Bispecific T-cell engagers for cancer immunotherapy. Immunol Cell Biol 93:290–296

    Article  CAS  PubMed  Google Scholar 

  123. Hughes-Parry HE, Cross RS, Jenkins MR (2019) The evolving protein engineering in the design of chimeric antigen receptor T cells. Int J Mol Sci 21:204

    Article  PubMed Central  CAS  Google Scholar 

  124. Walsh Z, Yang Y, Kohler ME (2019) Immunobiology of chimeric antigen receptor T cells and novel designs. Immunol Rev 290:100–113

    Article  CAS  PubMed  Google Scholar 

  125. Jefferis R, Lefranc MP (2009) Human immunoglobulin allotypes: possible implications for immunogenicity. MAbs 1:332–338

    Article  PubMed  PubMed Central  Google Scholar 

  126. Vidarsson G, Dekkers G, Rispens T (2014) IgG subclasses and allotypes: from structure to effector functions. Front Immunol 5:520

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Panico R, Powell WH, Richer J-C (1993) A guide to IUPAC nomenclature of organic compounds (recommendations 1993). Blackwell Science, Oxford, UK

    Google Scholar 

  128. Pottier J, Chastang R, Dumet C, Watier H (2017) Rethinking the INN system for therapeutic antibodies. MAbs 9:5–11

    Article  CAS  PubMed  Google Scholar 

  129. Robertson JS, Chui WK, Genazzani AA, Malan SF, López de la Rica Manjavacas A, Mignot G, Thorpe R, Balocco R, Rizzi M (2019) The INN global nomenclature of biological medicines: a continuous challenge. Biologicals 60:15–23

    Article  PubMed  Google Scholar 

  130. Mayrhofer P, Kunert R (2019) Nomenclature of humanised mAbs: early concepts, current challenges and future perspectives. Hum Antibodies 27:37–51

    Article  CAS  PubMed  Google Scholar 

  131. Martini S, Nielsen M, Peters B, Sette A (2020) The immune epitope database and analysis resource program 2003-2018: reflections and outlook. Immunogenetics 72:57–76

    Article  PubMed  Google Scholar 

  132. Lefranc MP, Giudicelli V, Duroux P, Jabado-Michaloud J, Folch G, Aouinti S, Carillon E, Duvergey H, Houles A, Paysan-Lafosse T, Hadi-Saljoqi S, Sasorith S, Lefranc G, Kossida S (2015) IMGT, the international ImMunoGeneTics information system 25 years on. Nucleic Acids Res 43:D413–D422

    Article  CAS  PubMed  Google Scholar 

  133. Lefranc MP (2007) IMGT, the international ImMunoGeneTics information system for Immunoinformatics. Methods for querying IMGT databases, tools, and web resources in the context of immunoinformatics. Methods Mol Biol 409:19–42

    Article  CAS  PubMed  Google Scholar 

  134. Delaney CE, Kelly JF, Ding W, Haqqani AS (2019) Intact mass spectrometry analysis of Immuno-isolated human therapeutic antibodies from serum. Methods Mol Biol 2024:153–166

    Article  CAS  PubMed  Google Scholar 

  135. Gaska JM, Ding Q, Ploss A (2019) Mouse models for studying HCV vaccines and therapeutic antibodies. Methods Mol Biol 1911:481–503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Bowers PM, Boyle WJ, Damoiseaux R (2018) The use of somatic Hypermutation for the affinity maturation of therapeutic antibodies. Methods Mol Biol 1827:479–489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Li C, Li T, Wang LX (2018) Chemoenzymatic Defucosylation of therapeutic antibodies for enhanced effector functions using bacterial α-Fucosidases. Methods Mol Biol 1827:367–380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Roopenian DC, Christianson GJ, Proetzel G, Sproule TJ (2016) Human FcRn transgenic mice for pharmacokinetic evaluation of therapeutic antibodies. Methods Mol Biol 1438:103–114

    Article  CAS  PubMed  Google Scholar 

  139. Pascal V, Laffleur B, Cogné M (2012) Class-specific effector functions of therapeutic antibodies. Methods Mol Biol 901:295–317

    Article  CAS  PubMed  Google Scholar 

  140. Roopenian DC, Christianson GJ, Sproule TJ (2010) Human FcRn transgenic mice for pharmacokinetic evaluation of therapeutic antibodies. Methods Mol Biol 602:93–104

    Article  CAS  PubMed  Google Scholar 

  141. Feng Y, Dimitrov DS (2009) Scaling-up and production of therapeutic antibodies for preclinical studies. Methods Mol Biol 525:499–508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Reinsberg J (2007) Detection of human antibodies generated against therapeutic antibodies used in tumor therapy. Methods Mol Biol 378:195–204

    Article  CAS  PubMed  Google Scholar 

  143. Delobel A, Cantais F, Catrain A, Dereux E, Van Vyncht G (2013) Therapeutic antibody glycosylation analysis: a contract research organization perspective in the frame of batch release or comparability support. Methods Mol Biol 988:115–143

    Article  CAS  PubMed  Google Scholar 

  144. Lee EC, Owen M (2012) The application of transgenic mice for therapeutic antibody discovery. Methods Mol Biol 901:137–148

    Article  CAS  PubMed  Google Scholar 

  145. Thom G, Minter R (2012) Optimization of CAT-354, a therapeutic antibody directed against interleukin-13, using ribosome display. Methods Mol Biol 805:393–401

    Article  CAS  PubMed  Google Scholar 

  146. Chan YP, Yan L, Feng YR, Broder CC (2009) Preparation of recombinant viral glycoproteins for novel and therapeutic antibody discovery. Methods Mol Biol 525:31–58

    Article  CAS  PubMed  Google Scholar 

  147. Raybould MIJ, Marks C, Lewis AP, Shi J, Bujotzek A, Taddese B, Deane CM (2020) Thera-SAbDab: the therapeutic structural antibody database. Nucleic Acids Res 48:D383–D388

    Article  CAS  PubMed  Google Scholar 

  148. Dunbar J, Krawczyk K, Leem J, Baker T, Fuchs A, Georges G, Shi J, Deane CM (2014) SAbDab: the structural antibody database. Nucleic Acids Res 42:D1140–D1146

    Article  CAS  PubMed  Google Scholar 

  149. Vafa O, Gilliland GL, Brezski RJ, Strake B, Wilkinson T, Lacy ER, Scallon B, Teplyakov A, Malia TJ, Strohl WR (2014) An engineered fc variant of an IgG eliminates all immune effector functions via structural perturbations. Methods 65:114–126

    Article  CAS  PubMed  Google Scholar 

  150. An Z, Forrest G, Moore R, Cukan M, Haytko P, Huang L, Vitelli S, Zhao JZ, Lu P, Hua J, Gibson CR, Harvey BR, Montgomery D, Zaller D, Wang F, Strohl W (2009) IgG2m4, an engineered antibody isotype with reduced fc function. MAbs 1:572–579

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gunnar Houen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Houen, G. (2022). Therapeutic Antibodies: An Overview. In: Houen, G. (eds) Therapeutic Antibodies. Methods in Molecular Biology, vol 2313. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1450-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1450-1_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1449-5

  • Online ISBN: 978-1-0716-1450-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics