[go: up one dir, main page]

Skip to main content

Optical-flow estimation while preserving its discontinuities: A variational approach

  • Motion Estimation and Segmentation
  • Conference paper
  • First Online:
Recent Developments in Computer Vision (ACCV 1995)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1035))

Included in the following conference series:

Abstract

This paper describes a variational approach devised for the purpose of estimating optical flow from a sequence of images with the constraint to preserve the flow discontinuities. This problem is set as a regularization and minimization of a non quadratic functional. The Tikhonov quadratic regularization term usually used to recover smooth solution is replaced by a particular function of the gradient flow specifically derived to allow flow discontinuities formation in the solution. Conditions to be fulfilled by this specific regularizing term, to preserve discontinuities and insure stability of the regularization problem, are also derived. To minimize this non quadratic functional, two different methods have been investigated. The first one is an iterative scheme to solve the associated non-linear Euler-Lagrange equations. The second solution introduces dual variables so that the minimization problem becomes a quadratic or a convex functional minimization problem. Promising experimental results on synthetic and real image sequences will illustrate the capabilities of this approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. G. Aubert, M. Barlaud, L. Blanc-Feraud, and P. Charbonnier. Deterministic edge-preserving regularization in computed imaging. IP2.3 Computed imaging, 1994.

    Google Scholar 

  2. G. Aubert and L. Lazaroaia. A variational method in image recovery. TR 423, URA au CNRS no 168,laboratoire J-A Dieudonne, Université de Nice Sophia-Antipolis-CNRS, June 1995.

    Google Scholar 

  3. J.L. Barron, D.J. Fleet, and S.S. Beauchemin. Performance of optical flow techniques. The International Journal of Computer Vision, 12(1):43–77, 1994.

    Google Scholar 

  4. J. Cohen. Nonlinear variational method for optical flow computation. In Proceedings 8th SCIA, volume 1, pages 523–530, 1993.

    Google Scholar 

  5. R. Deriche and O. Faugeras. Les EDP en traitement des images et vision par ordinateur. Technical report, INRIA, 1995.

    Google Scholar 

  6. D. Geman and G. Reynolds. Constrained restoration and the recovery of discontinuities. IEEE Transactions on Pattern Analysis and Machine Intelligence, 14(3):367–383, 1993.

    Google Scholar 

  7. F. Heitz and P. Bouthemy. Multimodal estimation of discontinuous optical flow using markov random fields. IEEE Transactions on Pattern Analysis and Machine Intelligence, 15(12):1217–1232, December 1993.

    Google Scholar 

  8. Berthold K. P. Horn and Brian G. Schunk. Determining Optical Flow. Artificial Intelligence, 17:185–203, 1981.

    Google Scholar 

  9. Berthold Klaus Paul Horn. Robot Vision. MIT Press, 1986.

    Google Scholar 

  10. P Kornprobst. Calcul de Flot Optique avec Préservation des Discontinuités. Rapport de stage de DEA. Proposé et encadré par R. Deriche et G. Aubert, INRIA, Université Nices-Sophia Antipolis, France, Juin 1995.

    Google Scholar 

  11. Hans-Hellmut Nagel. Direct estimation of optical flow and of its derivatives. In G.A. Orban and H.-H. Nagel, editors, Artificial and Biological Vision Systems, Basic Research Series, pages 191–224. Springer-Verlag, 1992.

    Google Scholar 

  12. Michael Otte and Hans-Helmut Nagel. Optical flow estimation: Advances and comparisons. In Jan-Olof Eklundh, editor, Proceedings of the 3rd European Conference on Computer Vision, volume 800 of Lecture Notes in Computer Science, pages 51–70. Springer-Verlag, 1994.

    Google Scholar 

  13. M. Proesmans, L. Van Gool, E. Pauwels, and A. Oosterlinck. Determination of Optical Flow and its Discontinuities using Non-Linear Diffusion. In Proceedings of the 3rd ECCV, II, number 801 in Lecture Notes in Computer Science, pages 295–304. Springer Verlag, 1994.

    Google Scholar 

  14. L. Rudin, S. Osher, and E. Fatemi. Nonlinear total variation based noise removal algorithms. Physica D, 60:259–268, 1992.

    Google Scholar 

  15. A.N. Tikhonov and V.Y. Arsenin. Solutions of Ill-posed Problems. Winston and Sons, Washington, D.C., 1977.

    Google Scholar 

  16. Y.L. You, M. Kaveh, W.Y. Xu, and A. Tannenbaum. Analysis and Design of Anisotropic Diffusion for Image Processing. In Proc. IEEE Int. Conf. on Image Proc. ICIP-94, volume II of III, pages 497–501, Austin(Texas), November 13–16 1994.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Stan Z. Li Dinesh P. Mital Eam Khwang Teoh Han Wang

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Deriche, R., Kornprobst, P., Aubert, G. (1996). Optical-flow estimation while preserving its discontinuities: A variational approach. In: Li, S.Z., Mital, D.P., Teoh, E.K., Wang, H. (eds) Recent Developments in Computer Vision. ACCV 1995. Lecture Notes in Computer Science, vol 1035. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-60793-5_63

Download citation

  • DOI: https://doi.org/10.1007/3-540-60793-5_63

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-60793-9

  • Online ISBN: 978-3-540-49448-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics