Abstract
Constraint Logic Programming language embodying extensional finite Fuzzy Sets is presented. Basic fuzzy set operations (=, ∈, ≠, and ∉) are defined as constraints over fuzzy sets and their elements. Simple list-like representation of sets is presented, with fset/2 as the interpreted set constructor and {} as the empty set. Members of the fuzzy sets are fuzzy elements (terms with mu/2 as the main functor), with explicit membership value associated with each individual member. The language is implemented using the concept of attributed variables; brief discussion of the usability of attributed variables for this kind of meta-programming is also given.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
H. Bureš: Constraint Logic Programming with Fuzzy Sets. Master thesis, Faculty of Informatics, Masaryk University, Brno, Czech Republic, 1995 (in czech).
A. Dovier, E. G. Omodeo, E. Pontelli, and G. Rosii. {log}: A logic programming language with finite sets. In Proceedings 8th International Conference on Logic Programming, pages 111–124. MIT Press, Cambridge, MA, 1991.
A. Dovier and E. Pontelli. A WAM-based implementation of logic language with sets. In Proc. Int. Symp. Logic. Prog. MIT Pres, 1994.
A. Dovier and G. Rossi. Embedding extensional finite sets in CLP. In Proceedings International Symposium on Logic Programming, MIT Press, Cambridge, MA, 1993.
M. Meier et al.: ECLiPSe, Extensions Manual. ECRC, Münich, Germany, 1995.
J. Feit, L. Matyska: Expert system for liver biopsy diagnosis, in preparation.
P. Hajek. Fuzzy logic as logic. In Proc. SOFSEM95. Springer-Verlag, 1995.
P. M. Hill and J. W. Lloyd. The Gödel Programming Language. MIT Press, New York, 1994.
C. J. Hinde. Fuzzy Prolog. Int. J. Man. Machine Studies, 24:569–595, 1986.
C. Holzbaur. Specification of Constraint Based Inference Mechanisms through Extended Unification. PhD thesis, University of Vienna, Freyung 6, A-1010 Vienna, Austria, 1990.
C. Holzbaur. DMCAI CLP 1.2. Technical report, University of Vienna, Freyung 6, A-1010 Vienna, Austria, 1992.
B. Legeard and E. Legros. CLPS: A set constraints logic programming language. Technical report, Laboratoire d'Automatique de Besançon, February 1991.
L. Matyska. Constraint logic programming. In SOFSEM93, Hrdoňov, 1993. VÚSEI AR Bratislava.
L. Matyska: Logic Programming with Fuzzy Śets. TR, Department of Computer Science, City University, London, England, 1993.
L. A. Zadeh. The role of fuzzy logic in the management of uncertainty in expert systems. In M. M. Gupta, A. Kandel, W. Brandler, and J. B. Kiszka, editors, Approximate Reasoning in Expert Systems, pages 3–32. North-Holland, Amsterdam, 1985.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1995 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Matyska, L., Bureš, H. (1995). Constraint Logic Programming with Fuzzy Sets. In: Bartosek, M., Staudek, J., Wiedermann, J. (eds) SOFSEM '95: Theory and Practice of Informatics. SOFSEM 1995. Lecture Notes in Computer Science, vol 1012. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-60609-2_26
Download citation
DOI: https://doi.org/10.1007/3-540-60609-2_26
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-60609-3
Online ISBN: 978-3-540-48463-9
eBook Packages: Springer Book Archive