[go: up one dir, main page]

Skip to main content

Constraint Logic Programming with Fuzzy Sets

  • Contributed Papers
  • Conference paper
  • First Online:
SOFSEM '95: Theory and Practice of Informatics (SOFSEM 1995)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1012))

  • 138 Accesses

Abstract

Constraint Logic Programming language embodying extensional finite Fuzzy Sets is presented. Basic fuzzy set operations (=, ∈, ≠, and ∉) are defined as constraints over fuzzy sets and their elements. Simple list-like representation of sets is presented, with fset/2 as the interpreted set constructor and {} as the empty set. Members of the fuzzy sets are fuzzy elements (terms with mu/2 as the main functor), with explicit membership value associated with each individual member. The language is implemented using the concept of attributed variables; brief discussion of the usability of attributed variables for this kind of meta-programming is also given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. H. Bureš: Constraint Logic Programming with Fuzzy Sets. Master thesis, Faculty of Informatics, Masaryk University, Brno, Czech Republic, 1995 (in czech).

    Google Scholar 

  2. A. Dovier, E. G. Omodeo, E. Pontelli, and G. Rosii. {log}: A logic programming language with finite sets. In Proceedings 8th International Conference on Logic Programming, pages 111–124. MIT Press, Cambridge, MA, 1991.

    Google Scholar 

  3. A. Dovier and E. Pontelli. A WAM-based implementation of logic language with sets. In Proc. Int. Symp. Logic. Prog. MIT Pres, 1994.

    Google Scholar 

  4. A. Dovier and G. Rossi. Embedding extensional finite sets in CLP. In Proceedings International Symposium on Logic Programming, MIT Press, Cambridge, MA, 1993.

    Google Scholar 

  5. M. Meier et al.: ECLiPSe, Extensions Manual. ECRC, Münich, Germany, 1995.

    Google Scholar 

  6. J. Feit, L. Matyska: Expert system for liver biopsy diagnosis, in preparation.

    Google Scholar 

  7. P. Hajek. Fuzzy logic as logic. In Proc. SOFSEM95. Springer-Verlag, 1995.

    Google Scholar 

  8. P. M. Hill and J. W. Lloyd. The Gödel Programming Language. MIT Press, New York, 1994.

    Google Scholar 

  9. C. J. Hinde. Fuzzy Prolog. Int. J. Man. Machine Studies, 24:569–595, 1986.

    Google Scholar 

  10. C. Holzbaur. Specification of Constraint Based Inference Mechanisms through Extended Unification. PhD thesis, University of Vienna, Freyung 6, A-1010 Vienna, Austria, 1990.

    Google Scholar 

  11. C. Holzbaur. DMCAI CLP 1.2. Technical report, University of Vienna, Freyung 6, A-1010 Vienna, Austria, 1992.

    Google Scholar 

  12. B. Legeard and E. Legros. CLPS: A set constraints logic programming language. Technical report, Laboratoire d'Automatique de Besançon, February 1991.

    Google Scholar 

  13. L. Matyska. Constraint logic programming. In SOFSEM93, Hrdoňov, 1993. VÚSEI AR Bratislava.

    Google Scholar 

  14. L. Matyska: Logic Programming with Fuzzy Śets. TR, Department of Computer Science, City University, London, England, 1993.

    Google Scholar 

  15. L. A. Zadeh. The role of fuzzy logic in the management of uncertainty in expert systems. In M. M. Gupta, A. Kandel, W. Brandler, and J. B. Kiszka, editors, Approximate Reasoning in Expert Systems, pages 3–32. North-Holland, Amsterdam, 1985.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Miroslav Bartosek Jan Staudek Jirí Wiedermann

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Matyska, L., Bureš, H. (1995). Constraint Logic Programming with Fuzzy Sets. In: Bartosek, M., Staudek, J., Wiedermann, J. (eds) SOFSEM '95: Theory and Practice of Informatics. SOFSEM 1995. Lecture Notes in Computer Science, vol 1012. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-60609-2_26

Download citation

  • DOI: https://doi.org/10.1007/3-540-60609-2_26

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-60609-3

  • Online ISBN: 978-3-540-48463-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics