Abstract
A dynamic environment, such as a production process, a communication network, highway traffic, etc., may contain a huge amount of information, changing with time, which is a valuable resource for understanding the general behavior of the environment, discovering the regularities and anomalies currently happening in the environment, controlling an evolution process, and intelligent modeling or managing the environment. Unfortunately, the data generated in a dynamic environment are often expressed in low level primitives and in huge volumes. Because of the dynamic, continuous and rapid changes of the information flow, it is difficult to catch the regularities and anomalies in a dynamic environment and react promptly for real-time applications. In this study, a knowledge discovery technique is integrated with data sampling and active database techniques to discover interesting behaviors of a dynamic environment and react intelligently to the environment changes. The discovery of the dynamics in a computer communication network and the application of the discovered knowledge for network management are taken as an example in our study. The study shows (1) data sampling is necessary in the collection of information for regularity analysis and anomaly detection; (2) knowledge discovery is important for generalizing low level data to high-level information and detecting interesting patterns; (3) active database technology is essential for real-time reaction to the changes in a dynamic environment; and (4) an integration of the three technologies forms a powerful tool for control and management of large dynamic environments in many applications.
The research of the first author was supported in part by a scholarship from the Ministry of Education, Science and Culture of Japan, that of the second author was supported in part by the Ministry of Education, Science and Culture of Japan under Scientific Research Grant-in-Aid, and that of the third author was supported in part by grants from the Natural Sciences and Engineering Research Council of Canada and the Centre for Systems Science of Simon Fraser University. The work by the first author was done during his visit to Simon Fraser University in 1993.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
C. Beeri and T. Milo, “A Model for Active Object Oriented Database”, Proc. of the 17th Int'l Conf. on Very Large Data Bases, Barcelona, Spain, pp.337–349, Sept. 1991.
U. Dayal, B. Blaustein, A. Buchmann, U. Chakravarthy, M. Hsu, R. Ladin, D. McCarthy, A. Rosenthal, S. Sarin, M. J. Carey, M. Livny and R. Jauhari, “The HiPAC Project: Combining Active Databases and Timing Constrains,” ACM-SIGMOD Record 17, pp.51–70, March 1988.
J. Han, Y. Cai, and N. Cercone, “Knowledge Discovery in Databases: An Attribute-Oriented Approach,” In Proc. 18th Int'l Conf. on Very Large Data Bases, Vancouver, Canada, pp.547–559, August 1992.
J. Han, S. Nishio, and H. Kawano, “Knowledge Discovery in Object-Oriented and Active Databases”, Proc. of International Conference on Building and Sharing of Very Large-Scale Knowldge Bases'93, pp.205–214, Dec. 1993.
Y. Iwasaki and I. Bhandari, “Formal Basis for Commonsense Abstraction of Dynamic Systems,” AAAI-88, pp.307–312, August 1988.
H. Kawano, S. Nishio and T. Hasegawa, “Knowledge Acquisition in Communication Networks,” IEEE Region 10 Conference, Tencon 92, pp.881–885, Australia, Nov. 1992.
H. Kawano, S. Nishio, J. Han and T. Hasegawa, “Control of Dynamic Environment by Knowledge Discovery and Active Database Techniques,” Dept. of Applied. Math & Physics Technical Report 94008, Kyoto University, 1994.
P. Langley, H.A. Simon, G.L. Bradshaw and J.M. Zytkow, “Scientific Discovery: Computational Explorations of the Creative Processes. MIT Press, 1987.
J. Michael, M. J. Carey, R. Jauhari and M. Livny, “On Transaction Boundaries in Active Databases: a Performance Perspective,” IEEE Trans. Knowl. Data Eng., vol.3, no.3, pp.320–36, Sept. 1991.
S. Nishio, H. Kawano, and J. Han, “Knowledge Discovery in Object-Oriented Databases: The First Step”, Proc. of AAAI-93 Workshop on Knowledge Discovery in Databases, pp.186–198, July 1993.
G. Piatetsky-Shapiro and W.J. Frawley, Knowledge Discovery in Databases, AAAI/MIT Press, 1991.
A. Silberschatz, M. Stonebraker, and J. D. Ullman, “Database Systems: Achievements and Opportunities,” Comm. ACM, vol. 34, pp.94–109, 1991.
K. Sonoo, H. Kawano, S. Nishio and T. Hasegawa, “Accuracy Evaluation of Rules Derived from Sample Data in VLKD” (In Japanese), Proc. of the 5th Annual Conference of JSAI, pp.181–184, 1991.
J. Widom, “Active Database Rule Systems,” 3rd Intn'l Conf. on Extending Database Technology, Tutorial 7, Vienna, Austria, March 1992.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1994 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Kawano, H., Nishio, S., Han, J., Hasegawa, T. (1994). How does knowledge discovery cooperate with active database techniques in controlling dynamic environment?. In: Karagiannis, D. (eds) Database and Expert Systems Applications. DEXA 1994. Lecture Notes in Computer Science, vol 856. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-58435-8_202
Download citation
DOI: https://doi.org/10.1007/3-540-58435-8_202
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-58435-3
Online ISBN: 978-3-540-48796-8
eBook Packages: Springer Book Archive