Abstract
This paper discusses the techniques used in searching for irreducible trinomials in finite fields. We first collect some specific constructions of irreducible trinomials, then we show how to get new irreducible trinomials from given ones. We also make some comments on the irreducibility testing algorithms and on a primitivity testing algorithm although no experimantal results on primitive polynomials are reported on. Finally, updated tables of irreducible trinomials over F 2 are included.
This work was supported by a grant from the Information Technology Research Centre, a Centre of Excellence of the Province of Ontario
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
I.F. Blake, S. Gao and R.C. Mullin, “Explicit factorization of \(x^{2^k } + 1\) over F p with prime p≡3 mod 4”, AAECC, 4 (1993), pp. 89–94.
J. Brillhart, D.H. Lehmer, J.L. Selfridge, B. Tuckerman and S.S. Wagstaff, “Factorizations of b n±1, b=2, 3, 5, 6, 7, 10, 11, 12 Up to High Powers”, Vol. 22 of Contemporary Mathematics, AMS, 1988, 2nd edition.
L. Carlitz, “Factorization of a special polynomial over a finite field”, Pac. J. Math., 32 (1970) pp. 603–614.
S. Chowla, “A note on the construction of finite Galois fields GF(p n)”, J. Math. Anal. Appl., 15 (1966), pp. 53–54. in 335–344.
S.D. Cohen, “The distribution of polynomials over finite fields”, Acta Arith., 17 1970, pp. 255–271.
H. Fredricksen and R. Wisniewski, “On trinomials x n +x 2+1 and x 81±3 +x k+1 irreducible over GF(2)”, Information and Control, 50 (1981) pp. 58–63.
J. von zur Gathen and V. Shoup, “Computing Frobenius maps and factoring polynomials”, Computational Complexity, 2 (1992), pp. 187–224.
S.W. Golomb, Shift Register Sequences, Holden-Day Inc., 1967.
T. Hansen and G.L. Mullen, “Primitive polynomials over finite fields”, Math. Comp., 59 (1992) 639–643.
J.R. Heringa, H.W.J. BlŐte and A, Compagner, “New primitive trinomials of Mersenneexponent degrees for random-number generation”, Int'l J. Modern Physics C, 3 (1992) 561–564.
H.W. Lenstra and R.J. Schoof, “Primitive normal bases for finite fields”, Math. Comp., 48 (1987) pp. 217–231.
R. Lidl and H. Niederreiter, Finite Fields, Cambridge University Press, 1987.
R.W. Marsh, W.H. Mills, R.L. Ward, H. Rumsey Jr. and L.R. Welch, “Round trinomials”, Pac. J. Math., 96 (1981) pp. 175–192. self-reciprocal 43–53.
W.H. Mills, “The degrees of the factors of certain polynomials over finite fields”, Proc. Amer. Math. Soc., 25 (1970) pp. 860–863.
W.H. Mills and N. Zierler, “On a conjecture of Golomb”, Pac. J. Math., 28 (1969) pp. 635–640.
A.J. Menezes, editor, Applications of Finite fields, Kluwer Academic Publishers, 1993.
A. Odlyzko, Discrete logarithms in finite fields and their cryptographic significance, Proc. Eurocrypt '84, pp. 224–314.
A. Odlyzko, Asymptotic enumeration methods, manuscript, 1993.
R. Ree, “Proof of a conjecture of S. Chowla”, J. of Number Theory, 3 (1971), pp. 210–212.
E.R. Rodemich and H. Rumsey Jr., “Primitive polynomials of high degree”, Math. Comp., 22 (1968) pp.863–865.
V. Shoup, “Searching for primitive roots in finite fields”, Math. Comp., 58 (1992), pp. 369–380.
I.E. Shparlinskii, “On some problems in the theory of finite fields”, Russian Math. Surveys, 46 (1991), pp. 199–240; or Uspekhi Mat. Nauk, 46 (1991), pp. 165–200.
R.G. Swan, “Factorization of polynomials over finite fields”. Pac. J. Math., 12 (1962) 1099–1106.
N. Zierler and J. Brillhart, “On primitive trinomials (Mod 2)”, Information and Control, 13 (1968) pp. 541–554.
N. Zierler and J. Brillhart, “On primitive trinomials(Mod 2), II”, Information and Control, 14 (1969) pp. 566–569.
N. Zierler, “On x n+x+1 over GF(2)”, Information and Control, 16 (1970) pp. 502–505.
N. Zierler, “Primitive trinomials whose degree is a Mersenne exponent”, Information and Control, 15 (1969) pp. 67–69.
N. Zierler, “On the theorem of Gleason and Marsh”, Proc. Amer. Math. Soc., 9 (1958), pp. 236–237.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1994 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Blake, I.F., Gao, S., Lambert, R. (1994). Constructive problems for irreducible polynomials over finite fields. In: Gulliver, T.A., Secord, N.P. (eds) Information Theory and Applications. ITA 1993. Lecture Notes in Computer Science, vol 793. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-57936-2_27
Download citation
DOI: https://doi.org/10.1007/3-540-57936-2_27
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-57936-6
Online ISBN: 978-3-540-48392-2
eBook Packages: Springer Book Archive