[go: up one dir, main page]

Skip to main content

Constructive problems for irreducible polynomials over finite fields

  • Coding and Cryptography
  • Conference paper
  • First Online:
Information Theory and Applications (ITA 1993)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 793))

Included in the following conference series:

Abstract

This paper discusses the techniques used in searching for irreducible trinomials in finite fields. We first collect some specific constructions of irreducible trinomials, then we show how to get new irreducible trinomials from given ones. We also make some comments on the irreducibility testing algorithms and on a primitivity testing algorithm although no experimantal results on primitive polynomials are reported on. Finally, updated tables of irreducible trinomials over F 2 are included.

This work was supported by a grant from the Information Technology Research Centre, a Centre of Excellence of the Province of Ontario

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. I.F. Blake, S. Gao and R.C. Mullin, “Explicit factorization of \(x^{2^k } + 1\) over F p with prime p≡3 mod 4”, AAECC, 4 (1993), pp. 89–94.

    Google Scholar 

  2. J. Brillhart, D.H. Lehmer, J.L. Selfridge, B. Tuckerman and S.S. Wagstaff, “Factorizations of b n±1, b=2, 3, 5, 6, 7, 10, 11, 12 Up to High Powers”, Vol. 22 of Contemporary Mathematics, AMS, 1988, 2nd edition.

    Google Scholar 

  3. L. Carlitz, “Factorization of a special polynomial over a finite field”, Pac. J. Math., 32 (1970) pp. 603–614.

    Google Scholar 

  4. S. Chowla, “A note on the construction of finite Galois fields GF(p n)”, J. Math. Anal. Appl., 15 (1966), pp. 53–54. in 335–344.

    Google Scholar 

  5. S.D. Cohen, “The distribution of polynomials over finite fields”, Acta Arith., 17 1970, pp. 255–271.

    Google Scholar 

  6. H. Fredricksen and R. Wisniewski, “On trinomials x n +x 2+1 and x 81±3 +x k+1 irreducible over GF(2)”, Information and Control, 50 (1981) pp. 58–63.

    Google Scholar 

  7. J. von zur Gathen and V. Shoup, “Computing Frobenius maps and factoring polynomials”, Computational Complexity, 2 (1992), pp. 187–224.

    Google Scholar 

  8. S.W. Golomb, Shift Register Sequences, Holden-Day Inc., 1967.

    Google Scholar 

  9. T. Hansen and G.L. Mullen, “Primitive polynomials over finite fields”, Math. Comp., 59 (1992) 639–643.

    Google Scholar 

  10. J.R. Heringa, H.W.J. BlŐte and A, Compagner, “New primitive trinomials of Mersenneexponent degrees for random-number generation”, Int'l J. Modern Physics C, 3 (1992) 561–564.

    Google Scholar 

  11. H.W. Lenstra and R.J. Schoof, “Primitive normal bases for finite fields”, Math. Comp., 48 (1987) pp. 217–231.

    Google Scholar 

  12. R. Lidl and H. Niederreiter, Finite Fields, Cambridge University Press, 1987.

    Google Scholar 

  13. R.W. Marsh, W.H. Mills, R.L. Ward, H. Rumsey Jr. and L.R. Welch, “Round trinomials”, Pac. J. Math., 96 (1981) pp. 175–192. self-reciprocal 43–53.

    Google Scholar 

  14. W.H. Mills, “The degrees of the factors of certain polynomials over finite fields”, Proc. Amer. Math. Soc., 25 (1970) pp. 860–863.

    Google Scholar 

  15. W.H. Mills and N. Zierler, “On a conjecture of Golomb”, Pac. J. Math., 28 (1969) pp. 635–640.

    Google Scholar 

  16. A.J. Menezes, editor, Applications of Finite fields, Kluwer Academic Publishers, 1993.

    Google Scholar 

  17. A. Odlyzko, Discrete logarithms in finite fields and their cryptographic significance, Proc. Eurocrypt '84, pp. 224–314.

    Google Scholar 

  18. A. Odlyzko, Asymptotic enumeration methods, manuscript, 1993.

    Google Scholar 

  19. R. Ree, “Proof of a conjecture of S. Chowla”, J. of Number Theory, 3 (1971), pp. 210–212.

    Google Scholar 

  20. E.R. Rodemich and H. Rumsey Jr., “Primitive polynomials of high degree”, Math. Comp., 22 (1968) pp.863–865.

    Google Scholar 

  21. V. Shoup, “Searching for primitive roots in finite fields”, Math. Comp., 58 (1992), pp. 369–380.

    Google Scholar 

  22. I.E. Shparlinskii, “On some problems in the theory of finite fields”, Russian Math. Surveys, 46 (1991), pp. 199–240; or Uspekhi Mat. Nauk, 46 (1991), pp. 165–200.

    Google Scholar 

  23. R.G. Swan, “Factorization of polynomials over finite fields”. Pac. J. Math., 12 (1962) 1099–1106.

    Google Scholar 

  24. N. Zierler and J. Brillhart, “On primitive trinomials (Mod 2)”, Information and Control, 13 (1968) pp. 541–554.

    Article  Google Scholar 

  25. N. Zierler and J. Brillhart, “On primitive trinomials(Mod 2), II”, Information and Control, 14 (1969) pp. 566–569.

    Article  Google Scholar 

  26. N. Zierler, “On x n+x+1 over GF(2)”, Information and Control, 16 (1970) pp. 502–505.

    Article  Google Scholar 

  27. N. Zierler, “Primitive trinomials whose degree is a Mersenne exponent”, Information and Control, 15 (1969) pp. 67–69.

    Article  Google Scholar 

  28. N. Zierler, “On the theorem of Gleason and Marsh”, Proc. Amer. Math. Soc., 9 (1958), pp. 236–237.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

T. Aaron Gulliver Norman P. Secord

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Blake, I.F., Gao, S., Lambert, R. (1994). Constructive problems for irreducible polynomials over finite fields. In: Gulliver, T.A., Secord, N.P. (eds) Information Theory and Applications. ITA 1993. Lecture Notes in Computer Science, vol 793. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-57936-2_27

Download citation

  • DOI: https://doi.org/10.1007/3-540-57936-2_27

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-57936-6

  • Online ISBN: 978-3-540-48392-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics