Abstract
The elite genetic algorithm with adaptive mutations is applied to two different continuous optimization problems: determination of model parameters of optical constants of aluminum and thin film optical filter design. The concept of adaptive mutations makes the employed algorithm a versatile tool for solving continuous optimization problems. The algorithm has been successful in solving both investigated problems. In determination of optical constants of aluminum, excellent agreement between calculated and experimental data is obtained. In application to thin film optical filter design, low-pass filters designed using this algorithm are clearly superior to filters designed using the traditional approach.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
D. E. Goldberg, Genetic algorithms in search, optimization, and machine learning, (Addison-Wesley, Reading, 1989).
M. W. Gutowski, J. Phys. A, Math. Gen., 27, 7893, (1994).
H. Műhlenbein and D. Schlierkamp-Voosen, Evolutionary Computation, 1, 25, (1993).
K. P. Wong and Y. W. Wong, in Proc. ANZIIS-93, Perth, Western Australia, pp. 512–516, 1993.
K. P. Wong and Y. W. Wong, IEE Proc. Gen. Transm. Distrib., 141, 507, 1994.
A. B. Djurišić, J. M. Elazar and A. D. Rakić, J. Phys. A Math. Gen., 30, 7849, (1997).
A. Chipperfield and R. Fleming, Control and Computers, 23, 88, (1995).
D. E. Goldberg, Complex Systems, 5, 139, (1991).
K. Deb and R. B. Agrawal, Complex Systems, 9, 115, (1995).
J. L. Eshelman and J. D. Schaffer, in Proc. of Foundations of GA Workshop, pp.187–202, (1992).
A. B. Djurišić, Opt. Commun. 151, 147, (1998).
R. Vemuri and R. Vemuri, Elec. Lett., 30, 1270, (1994).
S. H. Clearwater and T. Hogg, Artificial intelligence, 81, 327, (1996).
R. R. Brooks, S. S. Iyengar and J. Chen, Artificial intelligence, 81, 327, (1996).
A. D. Rakić. Appl. Opt., 34, 4755, (1995).
C. J. Powel, J. Opt. Soc. Am., 60, 78, (1970).
H. Ehrenreich, H. R. Philipp, and B. Segall, Phys. Rev., 132, 1918, (1963).
K. Sturm and N. W. Ashcroft, Phys. Rev. B, 10, 1343, (1974).
E. Michielssen and D. S. Weile, in Genetic Algorithms in Engineering and Computer Science, edited by G. Winter, J. Periaux, M. Galan and P. Cuesta, John Wiley & Sons, New York, 345–369, (1995).
E. Michielssen, S. Ranjithan and R. Mittra, IEE Proceedings J, 139(12), 413, (1992).
S. Martin, J. Rivory and M. Shoenauer, Opt. Comm, 110, 503, (1994).
T. Eisenhammer, M. Lazarov, M. Leutbecher, U. Schoeffel and R. Sizmann, Appl. Opt., 32, 6310, (1994).
M. Born and E. Wolf, Principles of Optics, Pergamon Press, New York, (1964).
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 1999 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Djurišić, A.B., Rakić, A.D., Herbert Li, E., Majewski, M.L., Bundaleski, N., Stanić, B.V. (1999). Continuous Optimization Using Elite Genetic Algorithms With Adaptive Mutations. In: McKay, B., Yao, X., Newton, C.S., Kim, JH., Furuhashi, T. (eds) Simulated Evolution and Learning. SEAL 1998. Lecture Notes in Computer Science(), vol 1585. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-48873-1_47
Download citation
DOI: https://doi.org/10.1007/3-540-48873-1_47
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-65907-5
Online ISBN: 978-3-540-48873-6
eBook Packages: Springer Book Archive