[go: up one dir, main page]

Skip to main content

Natural Computation

  • Conference paper
  • First Online:
Simulated Evolution and Learning (SEAL 1998)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 1585))

Included in the following conference series:

  • 984 Accesses

Abstract

The idea of mimicking processes of organic evolution on computers and using such algorithms for solving adaptation and optimization tasks can be traced back to the Sixties. Genetic Algorithms (GA), Evolutionary Programming (EP), and Evolution Strategies (ES), the still vivid different strata of this idea, have not only survived until now, but have become an important tool within what has been called Computational Intelligence, Soft Computing, as well as Natural Computation. An outline of Evolutionary Algorithms (EA - the common denominator for GA, EP, and ES) will be sketched, their differences pinpointed, some theoretical results summarized, and some applications mentioned.

Abstract only.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Schwefel, HP. (1999). Natural Computation. In: McKay, B., Yao, X., Newton, C.S., Kim, JH., Furuhashi, T. (eds) Simulated Evolution and Learning. SEAL 1998. Lecture Notes in Computer Science(), vol 1585. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-48873-1_1

Download citation

  • DOI: https://doi.org/10.1007/3-540-48873-1_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-65907-5

  • Online ISBN: 978-3-540-48873-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics