[go: up one dir, main page]

Skip to main content

Some Structural and Algorithmic Properties of the Maximum Feasible Subsystem Problem

  • Conference paper
  • First Online:
Integer Programming and Combinatorial Optimization (IPCO 1999)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1610))

Abstract

We consider the problem Max FS: For a given infeasible linear system, determine a largest feasible subsystem. This problem has interesting applications in linear programming as well as in fields such as machine learning and statistical discriminant analysis. Max FS is N P-hard and also difficult to approximate. In this paper we examine structural and algorithmic properties of Max FS and of irreducible infeasible subsystems (IISs), which are intrinsically related, since one must delete at least one constraint from each IIS to attain feasibility. In particular, we establish: (i) that finding a smallest cardinality IIS is N P-hard as well as very difficult to approximate; (ii) a new simplex decomposition characterization of IISs; (iii) that for a given clutter, realizability as the IIS family for an infeasible linear system subsumes the Steinitz problem for polytopes; (iv) some results on the feasible subsystem polytope whose vertices are incidence vectors of feasible subsystems of a given infeasible system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. C. C. Aggarwal, R. K. Ahuja, J. Hao, and J. B. Orlin, Diagnosing infeasibilities in network flow problems, Mathematical Programming, 81 (1998), pp. 263–280.

    MathSciNet  Google Scholar 

  2. E. Amaldi, From finding maximum feasible subsystems of linear systems to feed-forward neural network design, PhD thesis, Dep. of Mathematics, EPF-Lausanne, 1994.

    Google Scholar 

  3. E. Amaldi and V. Kann, The complexity and approximability of finding maximum feasible subsystems of linear relations, Theoretical Comput. Sci., 147 (1995), pp. 181–210.

    Article  MATH  MathSciNet  Google Scholar 

  4. —, On the approximability of minimizing nonzero variables or unsatisfied relations in linear systems, Theoretical Comput. Sci., 209 (1998), pp. 237–260.

    Article  MATH  MathSciNet  Google Scholar 

  5. S. Arora, L. Babai, J. Stern, and Z. Sweedyk, The hardness of approximate optima in lattices, codes, and systems of linear equations, J. Comput. Syst. Sci., 54 (1997), pp. 317–331.

    Article  MATH  MathSciNet  Google Scholar 

  6. A. Bachem and M. Grötschel, New aspects of polyhedral theory, in Optimization and Operations Research, A. Bachem, ed., Modern Applied Mathematics, North Holland, 1982, ch. I.2, pp. 51–106.

    Google Scholar 

  7. E. Balas and S. M. Ng, On the set covering polytope: All the facets with coefficients in {0,1,2}, Mathematical Programming, 43 (1989), pp. 57–69.

    Article  MATH  MathSciNet  Google Scholar 

  8. L. Blum, F. Cucker, M. Shub, and S. Smale, Complexity and Real Computation, Springer-Verlag, 1997.

    Google Scholar 

  9. J. Bokowski and B. Sturmfels, Computational Synthetic Geometry, no. 1355 in Lecture Notes in Mathematics, Springer-Verlag, 1989.

    Google Scholar 

  10. N. Chakravarti, Some results concerning post-infeasibility analysis, Eur. J. Oper. Res., 73 (1994), pp. 139–143.

    Article  MATH  Google Scholar 

  11. J. Chinneck, Computer codes for the analysis of infeasible linear programs, J. Oper. Res. Soc., 47 (1996), pp. 61–72.

    Article  MATH  Google Scholar 

  12. —, An effective polynomial-time heuristic for the minimum-cardinality IIS set-covering problem, Annals of Mathematics and Artificial Intelligence, 17 (1996), pp. 127–144.

    Article  MATH  MathSciNet  Google Scholar 

  13. —, Feasibility and viability, in Advances in Sensitivity Analysis and Parametric Programming, T. Gál and H. Greenberg, eds., Kluwer Academic Publishers, 1997.

    Google Scholar 

  14. J. Chinneck and E. Dravnieks, Locating minimal infeasible constraint sets in linear programs, ORSA Journal on Computing, 3 (1991), pp. 157–168.

    MATH  Google Scholar 

  15. M. Dell’amico, F. Maffioli, and S. Martello, Annotated Bibliographies in Combinatorial Optimization, John Wiley, 1997.

    Google Scholar 

  16. K. Fan, On systems of linear inequalities, in Linear Inequalities and Related Systems, H. W. KUHN and A. W. TUCKER, eds., no. 38 in Annals of Mathematical Studies, Princeton University Press, NJ, 1956, pp. 99–156.

    Google Scholar 

  17. J. Gleeson and J. Ryan, Identifying minimally infeasible subsystems of inequalities, ORSA Journal on Computing, 2 (1990), pp. 61–63.

    MATH  Google Scholar 

  18. H. J. Greenberg, Consistency, redundancy, and implied equalities in linear systems, Annals of Mathematics and Artificial Intelligence, 17 (1996), pp. 37–83.

    Article  MATH  MathSciNet  Google Scholar 

  19. H. J. Greenberg and F. H. Murphy, Approaches to diagnosing infeasible linear programs, ORSA Journal on Computing, 3 (1991), pp. 253–261.

    MATH  Google Scholar 

  20. J. Håastad, Some optimal inapproximability results, in Proc. Twenty-ninth Ann. ACM Symp. Theory of Comp., ACM, 1997, pp. 1–10.

    Google Scholar 

  21. M. Laurent, A generalization of antiwebs to independence systems and their canonical facets, Mathematical Programming, 45 (1989), pp. 97–108.

    Article  MATH  MathSciNet  Google Scholar 

  22. O. L. Mangasarian, Misclassification minimization, J. of Global Optimization, 5 (1994), pp. 309–323.

    Article  MATH  MathSciNet  Google Scholar 

  23. B. Mishra, Computational real algebraic geometry, in Handbook of Discrete and Computational Geometry, J. Goodman and J. O’Rouke, eds., CRC Press, 1997, ch. 29.

    Google Scholar 

  24. N. E. Mnëv, The universality theorems on the classification problem of configuration varieties and convex polytopes varieties, in Topology and Geometry — Rohlin Seminar, O. Y. Viro, ed., no. 1346 in Lecture Notes in Mathematics, Springer-Verlag, 1988, pp. 527–543.

    Google Scholar 

  25. T. S. Motzkin, Beiträge zur Theorie der Linearen Ungleichungen, PhD thesis, Basel, 1933.

    Google Scholar 

  26. M. Parker, A set covering approach to infeasibility analysis of linear programming problems and related issues, PhD thesis, Dep. of Mathematics, University of Colorado at Denver, 1995.

    Google Scholar 

  27. M. Parker and J. Ryan, Finding the minimum weight IIS cover of an infeasible system of linear inequalities, Annals of Mathematics and Artificial Intelligence, 17 (1996), pp. 107–126.

    Article  MATH  MathSciNet  Google Scholar 

  28. J. Richter-Gebert, Realization Spaces of Polytopes, no. 1643 in Lecture Notes in Mathematics, Springer-Verlag, 1996.

    Google Scholar 

  29. J. Ryan, Transversals of IIS-hypergraphs, Congressus Numerantium, 81 (1991), pp. 17–22.

    MathSciNet  Google Scholar 

  30. —, IIS-hypergraphs, SIAM J. Disc. Math., 9 (1996), pp. 643–653.

    Article  MATH  Google Scholar 

  31. G. M. Ziegler, Lectures on Polytopes, Springer-Verlag, 1994.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Amaldi, E., Pfetsch, M.E., Trotter, L.E. (1999). Some Structural and Algorithmic Properties of the Maximum Feasible Subsystem Problem. In: Cornuéjols, G., Burkard, R.E., Woeginger, G.J. (eds) Integer Programming and Combinatorial Optimization. IPCO 1999. Lecture Notes in Computer Science, vol 1610. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-48777-8_4

Download citation

  • DOI: https://doi.org/10.1007/3-540-48777-8_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66019-4

  • Online ISBN: 978-3-540-48777-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics