Abstract
This paper presents an interpretation of a classic optical flow method by Nagel and Enkelmann as a tensor-driven anisotropic diffusion approach in digital image analysis. We introduce an improvement into the model formulation, and we establish well-posedness results for the resulting system of parabolic partial differential equations. Our method avoids linearizations in the optical flow constraint, and it can recover displacement fields which are far beyond the typical one-pixel limits that are characteristic for many differential methods for optical flow recovery. A robust numerical scheme is presented in detail. We avoid convergence to irrelevant local minima by embedding our method into a linear scale- space framework and using a focusing strategy from coarse to fine scales. The high accuracy of the proposed method is demonstrated by means of a synthetic and a real-world image sequence.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
L. Alvarez, J. Esclarín, M. Lefébure and J. Sánchez, A PDE model for computing the optical flow, Proc. XVI Congreso de Ecuaciones Diferenciales y Aplicaciones (C.E.D.Y.A. XVI, Las Palmas de Gran Canaria, Sept. 21–24, 1999), in press.
L. Alvarez, F. Guichard, P.-L. Lions, J.-M. Morel, Axioms and fundamental equations in image processing, Arch. Rational Mech. Anal., Vol. 123, 199–257, 1993.
L. Alvarez, P.-L. Lions, J.-M. Morel, Image selective smoothing and edge detection by nonlinear diffusion. II, SIAM J. Numer. Anal., Vol. 29, 845–866, 1992.
P. Anandan, A computational framework and an algorithm for the measurement of visual motion, Int. J. Comput. Vision, Vol. 2, 283–310, 1989.
J.L. Barron, D.J. Fleet, S.S. Beauchemin, Performance of optical flow techniques, Int. J. Comput. Vision, Vol. 12, 43–77, 1994.
F. Bergholm, Edge focusing, IEEE Trans. Pattern Anal. Mach. Intell., Vol. 9, 726–741, 1987.
M. Bertero, T.A. Poggio, V. Torre, Ill-posed problems in early vision, Proc. IEEE, Vol. 76, 869–889, 1988.
M.J. Black, P. Anandan, Robust dynamic motion estimation over time, Proc. IEEE Comp. Soc. Conf. on Computer Vision and Pattern Recognition (CVPR’ 91, Maui, June 3–6, 1991), IEEE Computer Society Press, Los Alamitos, 292–302, 1991.
A. Blake, A. Zisserman, Visual reconstruction, MIT Press, Cambridge (Mass.), 1987.
I. Cohen, Nonlinear variational method for optical flow computation, Proc. Eighth Scandinavian Conf. on Image Analysis (SCIA’ 93, Tromsø, May 25–28, 1993), Vol. 1, 523–530, 1993.
R. Deriche, P. Kornprobst, G. Aubert, Optical-flow estimation while preserving its discontinuities: A variational approach, Proc. Second Asian Conf. Computer Vision (ACCV’ 95, Singapore, December 5–8, 1995), Vol. 2, 290–295, 1995.
W. Enkelmann, Investigation of multigrid algorithms for the estimation of optical flow fields in image sequences, Computer Vision, Graphics and Image Processing, Vol. 43, 150–177, 1988.
L. Florack, Image structure, Kluwer, Dordrecht, 1997.
L.M.J. Florack, W.J. Niessen, M. Nielsen, The intrinsic structure of the optic flow incorporating measurement duality, Int. J. Comput. Vision, Vol. 27, 263–286, 1998.
B. ter Haar Romeny, L. Florack, J. Koenderink, M. Viergever (Eds.), Scale-space theory in computer vision, Lecture Notes in Computer Science, Vol. 1252, Springer, Berlin, 1997.
B. Horn, B. Schunck, Determining optical flow, Artif. Intell., Vol. 17, 185–203, 1981.
T. Iijima, Basic theory on normalization of pattern (in case of typical one-dimensional pattern), Bulletin of the Electrotechnical Laboratory, Vol. 26, 368–388, 1962 (in Japanese).
T. Iijima, Pattern recognition, Corona-sha, 1973 (in Japanese).
T. Iijima, Theory of pattern recognition, Series of Basic Information Technology, Vol. 6, Morishita Publishing, 1989 (in Japanese).
J.J. Koenderink, The structure of images, Biological Cybernetics, Vol. 50, 363–370, 1984.
A. Kumar, A.R. Tannenbaum, G.J. Balas, Optic flow: a curve evolution approach, IEEE Trans. Image Proc., Vol. 5, 598–610, 1996.
T. Lindeberg, Scale-space theory in computer vision, Kluwer, Boston, 1994.
A. Mitiche, P. Bouthemy, Computation and analysis of image motion: a synopsis of current problems and methods, Int. J. Comput. Vision, Vol. 19, 29–55, 1996.
H.H. Nagel, W. Enkelmann, An investigation of smoothness constraints for the estimation of displacement vector fields from images sequences, IEEE Trans. Pattern Anal. Mach. Intell., Vol. 8, 565–593, 1986.
M. Proesmans, L. Van Gool, E. Pauwels, A. Oosterlinck, Determination of optical flow and its discontinuities using non-linear diffusion, J.-O. Eklundh (Ed.), Computer vision-ECCV’ 94, Lecture Notes in Computer Science, Vol. 801, Springer, Berlin, 295–304, 1994.
E. Radmoser, O. Scherzer, J. Weickert, Scale-space properties of regularization methods, this volume.
C. Schnörr, Segmentation of visual motion by minimizing convex non-quadratic functionals, Proc. 12th Int. Conf. Pattern Recognition (ICPR 12, Jerusalem, Oct. 9–13, 1994), Vol. A, IEEE Computer Society Press, Los Alamitos, 661–663, 1994.
J. Shah, A nonlinear diffusion model for discontinuous disparity and half-occlusions in stereo, Proc. IEEE Comp. Soc. Conf. Computer Vision and Pattern Recognition (CVPR’ 93, New York, June 15–17, 1993), IEEE Computer Society Press, Los Alamitos, 34–40, 1993.
J. Sporring, M. Nielsen, L. Florack, P. Johansen (Eds.), Gaussian scale-space theory, Kluwer, Dordrecht, 1997.
J. Weickert, Theoretical foundations of anisotropic diffusion in image processing, Computing, Suppl. 11, 221–236, 1996.
J. Weickert, Anisotropic diffusion in image processing, Teubner, Stuttgart, 1998.
J. Weickert, On discontinuity-preserving optic flow, S. Orphanoudakis, P. Trahanias, J. Crowley, N. Katevas (Eds.), Proc. Computer Vision and Mobile Robotics Workshop (CVMR’ 98, Santorini, Sept. 17–18, 1998), 115–122, 1998.
J. Weickert, S. Ishikawa, A. Imiya, Linear scale-space has first been proposed in Japan, J. Math. Imag. Vision, Vol. 10, 237–252, 1999.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 1999 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Alvarez, L., Sánchez, J., Weickert, J. (1999). A Scale-Space Approach to Nonlocal Optical Flow Calculations. In: Nielsen, M., Johansen, P., Olsen, O.F., Weickert, J. (eds) Scale-Space Theories in Computer Vision. Scale-Space 1999. Lecture Notes in Computer Science, vol 1682. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-48236-9_21
Download citation
DOI: https://doi.org/10.1007/3-540-48236-9_21
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-66498-7
Online ISBN: 978-3-540-48236-9
eBook Packages: Springer Book Archive