[go: up one dir, main page]

Skip to main content

The Boolean Hierarchy of NP-Partitions

Extended Abstract

  • Conference paper
  • First Online:
STACS 2000 (STACS 2000)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1770))

Included in the following conference series:

Abstract

We introduce the boolean hierarchy of k-partitions over NP for k ≥ 3 as a generalization of the boolean hierarchy of sets (i.e., 2-partitions) over NP. Whereas the structure of the latter hierarchy is rather simple the structure of the boolean hierarchy of k-partitions over NP for k ≥ 3 turns out to be much more complicated. We establish the Embedding Conjecture which enables us to get a complete idea of this structure. This conjecture is supported by several partial results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. J.-Y. Cai, T. Gundermann, J. Hartmanis, L. A. Hemachandra, V. Sewelson, K. W. Wagner, and G. Wechsung. The boolean hierarchy I: Structural properties. SIAM Journal on Computing, 17(6):1232–1252, 1988.

    Article  MATH  MathSciNet  Google Scholar 

  2. J.-Y. Cai and L. Hemachandra. The Boolean hierarchy: hardware over NP. In Proceedings 1st Structure in Complexity Theory Conference, volume 223 of Lecture Notes in Computer Science, pages 105–124. Springer-Verlag, 1986.

    Google Scholar 

  3. G. Grätzer. General Lattice Theory. Akademie-Verlag, Berlin, 1978.

    Google Scholar 

  4. L. A. Hemaspaandra, A. Hoene, A. V. Naik, M. Ogihara, A. L. Selman, T. Thierauf, and J. Wang. Nondeterministically selective sets. International Journal of Foundations of Computer Science, 6(4):403–416, 1995.

    Article  MATH  Google Scholar 

  5. U. Hertrampf. Locally definable acceptance types — the three-valued case. In Proceedings 1st Latin American Symposium on Theoretical Informatics, volume 583 of Lecture Notes in Computer Science, pages 262–271, Berlin, 1992. Springer-Verlag.

    Google Scholar 

  6. J. Kadin. The polynomial time hierarchy collapses if the Boolean hierarchy collapses. SIAM Journal on Computing, 17(6):1263–1282, 1988. Erratum in same journal 20(2):404, 1991.

    Article  MATH  MathSciNet  Google Scholar 

  7. J. Köbler, U. Schöning, and K. W. Wagner. The difference and truth-table hierarchies for NP. RAIRO Theoretical Informatics and Applications, 21(4):419–435, 1987.

    MATH  Google Scholar 

  8. K. W. Wagner and G. Wechsung. On the boolean closure of NP. Extended abstract as: G. Wechsung. On the boolean closure of NP. Proceedings 5th International Conference on Fundamentals in Computation Theory, volume 199 of Lecture Notes in Computer Science, pages 485–493, Berlin, 1985.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kosub, S., Wagner, K.W. (2000). The Boolean Hierarchy of NP-Partitions. In: Reichel, H., Tison, S. (eds) STACS 2000. STACS 2000. Lecture Notes in Computer Science, vol 1770. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-46541-3_13

Download citation

  • DOI: https://doi.org/10.1007/3-540-46541-3_13

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-67141-1

  • Online ISBN: 978-3-540-46541-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics