[go: up one dir, main page]

Skip to main content

Distributed Anatomical Brain Connectivity Derived from Diffusion Tensor Imaging

  • Conference paper
  • First Online:
Information Processing in Medical Imaging (IPMI 2001)

Abstract

A method is presented for determining likely paths of anatomical connection between regions of the brain using MR diffusion tensor information. Level set theory, applied using fast marching methods, is used to generate 3-D time of arrival maps, from which connection paths between brain regions may be identified. The method is demonstrated in the normal brain and it is shown that major white matter tracts may be elucidated and that multiple connections and tract branching are allowed. Maps of the likelihood of connection between brain regions are also determined. Two metrics are described for estimating the (informal) likelihood of connection between regions.

Acknowledgements

This work was supported by the Multiple Sclerosis Society of Great Britain and Northern Ireland. The contributions of Klaas Stephan, Olga Ciccarelli, Sofia Eriksson, David Werring, and Olivier Coulon are gratefully acknowledged.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Basser, P.J., Mattiello, J., Le Bihan, D.: Estimation of the Effective Self-Diffusion Tensor from the NMR Spin Echo. J. Magn. Reson. B. 103 (1994) 247–254

    Article  Google Scholar 

  2. Pierpaoli, C., Basser, P.J.: Toward a Quantitative Assessment of Diffusion Anisotropy. Magn. Reson. Med. 36 (1996) 893–906

    Article  Google Scholar 

  3. Basser, P.J., Pierpaoli, C.: Microstructural and Physiological Features of Tissues Elucidated by Quantitative-Diffusion-Tensor MRI. J. Magn. Reson. B. 111 (1996) 209–219

    Article  Google Scholar 

  4. Jones, D.K., Simmons, A., Williams, S.C.R., Horsfield, M.A.: Non-Invasive Assessment of Axonal Fiber Connectivity in the Human Brain via Diffusion Tensor MRI. Magn. Reson. Med. 42 (1999) 37–41

    Article  Google Scholar 

  5. Poupon, C., Clark, C.A., Froulin, V., et al.: Regularization of Diffusion-Based Direction Maps for the Tracking of Brain White Matter Fascicles. NeuroImage 12 (2000) 184–195

    Article  Google Scholar 

  6. Conturo, T.E., Lori, N.F., Cull, T.S., et al.: Tracking Neuronal Fiber Pathways in the Living Human Brain. Proc. Nat. Acad. Sci. USA 96 (1999) 10422–10427

    Article  Google Scholar 

  7. Mori, S., Crain, B.J., Chacko, V.P., van Zijl, P.C.M.: Three-Dimensional Tracking of Axonal Projections in the Brain by Magnetic Resonance Imaging. Ann. Neurol. 45 (1999) 265–269

    Article  Google Scholar 

  8. Basser, P.J., Pajevic, S., Pierpaoli, C., Duda, J., Aldroubi, A.: In Vivo Fiber Tractography Using DT-MRI Data. Magn. Reson. Med. 44 (2000) 625–632

    Article  Google Scholar 

  9. Tuch, D.S., Belliveau, J.W., Wedeen, V.J.: A Path Integral Approach to White Matter Tractography. In: Proceedings of the 8th meeting of the International Society for Magnetic Resonance in Medicine. (2000) 791

    Google Scholar 

  10. Sethian, J.A.: A Fast Marching Level Set Method for Monotonically Advancing Fronts. Proc. Nat. Acad. Sci. USA 93 (1996) 1591–1595

    Article  MATH  MathSciNet  Google Scholar 

  11. Sethian, J.A.: Level Set Methods and Fast Marching Methods. 2nd edn. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  12. Malladi, R. and Sethian, J.A.: An O(NlogN) Algorithm for Shape Modeling. Proc. Nat. Acad. Sci. USA 93 (1996) 9389–9392

    Article  MATH  MathSciNet  Google Scholar 

  13. Parker, G.J.M. and Dehmeshki, J.: A Fast Marching Analysis of MR Diffusion Tensor Imaging for Following White Matter Tracts. In: Medical Image Understanding and Analysis MIUA2000 (2000) 185–188

    Google Scholar 

  14. Parker, G.J.M. and Dehmeshki, J.: A Level Sets Approach to Determining Brain Region Connectivity. In: Proceedings of the 1st International Workshop on Image and Signal Processing and Analysis IWISPA 2000, 22nd International conference on Information Technology Interfaces (2000) 145–150

    Google Scholar 

  15. Kimmel, R. and Sethian, J.A.: Computing Geodesic Paths on Manifolds. Proc. Natl. Acad. Sci. USA 95 (1998) 8431–8435

    Article  MATH  MathSciNet  Google Scholar 

  16. Jones, D.K., Horsfield, M.A., Simmons, A.: Optimal Strategies for Measuring Diffusion in Anisotropic Systems by Magnetic Resonance Imaging. Magn. Reson. Med. 42 (1999) 515–525

    Article  Google Scholar 

  17. Talairach, J. and Tournoux, P.: Co-planar Stereotaxic Atlas of the Human Brain. Georg Thieme Verlag, Stuttgart (1988)

    Google Scholar 

  18. Bürgel, U., Schormann, T., Schleicher, A., Zilles, K.: Mapping of Histologically Identified Long Fiber Tracts in Human Cerebral Hemispheres to the MRI Volume of a Reference Brain: Position and Spatial Variability of the Optic Radiation. NeuroImage 10 (1999) 489–499

    Article  Google Scholar 

  19. Miklossy, J., van der Loos, H.: The Long-Distance Effects of Brain Lesions: Visualization of Myelinated Pathways in the Human Brain Using Polarizing and Fluorescence Microscopy. J. Neuropathol. Exp. Neurol. 50 (1991) 1–15

    Article  Google Scholar 

  20. Pujol, R., Marti-Vilalta, J. L., Junque, C., Vendrell, P., Fernandez, J.,and Capdevilla, A.: Wallerian Degeneration of the Pyramidal Tract Studied by Magnetic Resonance Imaging. Stroke 21 (1990) 404–409

    Google Scholar 

  21. Werring, D.J., Toosey, A.T., Clark, C.A., Parker, G.J.M., Barker, G.J., Miller, D.H., Thompson, A.J.: Diffusion tensor imaging can detect and quantify corticospinal tract degeneration after stroke. J. Neurol. Neurosurg. Psychiatry 69 (2000) 269–272

    Article  Google Scholar 

  22. Stephan, K.E., Parker, G.J.M., Barker, G.J., Rowe, J.B., MacManus, D.G., Passingham, R.E., Lemon, R.N., Turner, R.: In Vivo Tracing of Anatomical Fibre Tracts in the Macaque Monkey Brain by Diffusion Tensor Imaging (DTI). In: Proceedings Human Brain Mapping (2001) (In press)

    Google Scholar 

  23. Styner, M., Coradi, T., Gerig, G.: Brain Morphometry by Distance Measurement in a Non-Euclidian, Curvilinear Space. In: Kuba, A., Šámal, M., Todd-Pokropek, A. (eds.): Information Processing in Medical Imaging IPMI’99. Lecture Notes Computer Science, Vol. 1613. Springer-Verlag, Berlin Heidelberg New York (1999) 364–369

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Spinger-Verlag Berlin Heidelberg

About this paper

Cite this paper

Parker, G.J., Wheeler-Kingshott, 1.A., Barker, G.J. (2001). Distributed Anatomical Brain Connectivity Derived from Diffusion Tensor Imaging. In: Insana, M.F., Leahy, R.M. (eds) Information Processing in Medical Imaging. IPMI 2001. Lecture Notes in Computer Science, vol 2082. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45729-1_9

Download citation

  • DOI: https://doi.org/10.1007/3-540-45729-1_9

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42245-7

  • Online ISBN: 978-3-540-45729-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics