[go: up one dir, main page]

Skip to main content

Cartesian Factoring of Polyhedra in Linear Relation Analysis

  • Conference paper
  • First Online:
Static Analysis (SAS 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2694))

Included in the following conference series:

Abstract

Linear Relation Analysis [CH78] suffers from the cost of operations on convex polyhedra, which can be exponential with the number of involved variables. In order to reduce this cost, we propose to detect when a polyhedron is a Cartesian product of polyhedra of lower dimensions, i.e., when groups of variables are unrelated with each other. Classical operations are adapted to work on such factored polyhedra. Our implementation shows encouraging experimental results.

Vérimag is a joint laboratory of Université Joseph Fourier, CNRS and INPG associated with IMAG.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. BBC+00._N. Bjorner, A. Browne, M. Colon, B. Finkbeiner, Z. Manna, H. Sipma, and T. Uribe. Verifying temporal properties of reactive systems: A STeP tutorial. Formal Methods in System Design, 16:227–270, 2000.

    Article  Google Scholar 

  2. N. Bjorner, I. Anca Browne, and Z. Manna. Automatic generation of invariants and intermediate assertions. Theoretical Computer Science, 173(1):49–87, February 1997.

    Article  MathSciNet  Google Scholar 

  3. R. Bagnara, E. Ricci, E. Zaffanella, and P. M. Hill. Possibly not closed convex polyhedra and the parma polyhedra library. In M. V. Hermenegildo and G. Puebla, editors, 9th International Symposium on Static Analysis, SAS’02, Madrid, Spain, September 2002. LNCS 2477.

    Google Scholar 

  4. P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static analysis of programs by construction or approximation of fix-points. In 4th ACM Symposium on Principles of Programming Languages, POPL’77, Los Angeles, January 1977.

    Google Scholar 

  5. P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among variables of aprogram. In 5th ACM Symposium on Principles of Programming Languages, POPL’78, Tucson (Arizona), January 1978.

    Google Scholar 

  6. N. V. Chernikova. Algorithm for discovering the set of all solutions of a linear programming problem. U.S.S.R. Computational Mathematics and Mathematical Physics, 8(6):282–293, 1968.

    Article  MATH  Google Scholar 

  7. Ph. Clauss and V. Loechner. Parametric analysis of polyhedral iteration spaces. Journal of VLSI Signal Processing, 19(2), July 1998.

    Google Scholar 

  8. N. Dor, M. Rodeh, and M. Sagiv. Cleanness checking of string manipulations in C programs via integer analysis. In P. Cousot, editor, SAS’01, Paris, July 2001. LNCS 2126.

    Google Scholar 

  9. N. Dor, M. Rodeh, and M. Sagiv. CCSV: towards a realistic tool for statically detecting all buffer overflows in C. to appear in PLDI03, 2003.

    Google Scholar 

  10. N. Halbwachs. Détermination automatique de relations linéaires vérifiées par les variables d’un programme. Thèse de troisième cycle, University of Grenoble, March 1979.

    Google Scholar 

  11. T. A. Henzinger, P.-H. Ho, and H. Wong-Toi. Hytech: A model checker for hybrid systems. Software Tools for Technology Transfer, 1:110–122, 1997.

    Article  MATH  Google Scholar 

  12. N. Halbwachs, Y.E. Proy, and P. Roumanoff. Verification of real-time systems using linear relation analysis. Formal Methods in System Design, 11(2):157–185, August 1997.

    Article  Google Scholar 

  13. F. Irigoin, P. Jouvelot, and R. Triolet. Semantical interprocedural parallelization: An overview of the PIPS project. In ACM Int. Conf. on Supercomputing, ICS’91, Köln, 1991.

    Google Scholar 

  14. B. Jeannet, N. Halbwachs, and P. Raymond. Dynamic partitioning in analyses of numerical properties. In A. Cortesi and G. Filé, editors, Static Analysis Symposium, SAS’99, Venice (Italy), September 1999. LNCS 1694, Springer Verlag.

    Google Scholar 

  15. M. Karr. Affine relationships among variables of a program. Acta Informatica, 6:133–151, 1976.

    Article  MATH  MathSciNet  Google Scholar 

  16. H. LeVerge. A note on Chernikova’s algorithm. RR. 635, IRISA, February 1992.

    Google Scholar 

  17. T. S. Motzkin, H. Raiffa, G. L. Thompson, and R. M. Thrall. The double description method. In H. W. Kuhn and A. W. Tucker, editors, Contribution to the Theory of Games — Volume II. Annals of Mathematic Studies, nr 28, Princeton University Press, 1953.

    Google Scholar 

  18. F. Tip. A survey of program slicing techniques. Journal of Programming Languages, 3(3):121–189, September 1995.

    Google Scholar 

  19. D. K. Wilde. A library for doing polyhedral operations. RR. 785, IRISA, December 1993.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Halbwachs, N., Merchat, D., Parent-Vigouroux, C. (2003). Cartesian Factoring of Polyhedra in Linear Relation Analysis. In: Cousot, R. (eds) Static Analysis. SAS 2003. Lecture Notes in Computer Science, vol 2694. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44898-5_20

Download citation

  • DOI: https://doi.org/10.1007/3-540-44898-5_20

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40325-8

  • Online ISBN: 978-3-540-44898-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics