[go: up one dir, main page]

Skip to main content

An Adaptive Approach to Blind Source Separation Using a Self-Organzing Map and a Neural Gas

  • Conference paper
  • First Online:
Artificial Neural Nets Problem Solving Methods (IWANN 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2687))

Included in the following conference series:

  • 605 Accesses

Abstract

Blind source separation (BSS) tries to transform a mixed random vector in order to recover the original independent sources. We present a new approach to linear BSS by using either a self-organizing map (SOM) or a neural gas (NG). In comparison to other mixture-space analysis (’geometric’) algorithms, these result in a considerable improvement in separation quality, although the computational cost is rather high. One goal of these algorithms is to establish connections between neural networks and BSS that could further be exploited by for example transferring convergence proofs for SOMs to geometric BSS algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. S. Amari, A. Cichocki, and H.H. Yang. A new learning algorithm for blind signal separation. Advances in Neural information Processing Systems, 8:757–763, 1996.

    Google Scholar 

  2. A.J. Bell and T.J. Sejnowski. An information-maximization approach to blind seperation and blind deconvolution. Neural Computation, 7:1129–1159, 1995.

    Article  Google Scholar 

  3. J.-F. Cardoso. Blind signal seperation: Statistical principals. Proc. IEEE, 86:2009–2025, 1998.

    Google Scholar 

  4. P. Comon. Independent component analysis—a new concept? Signal Processing, 36:287–314, 1994.

    Article  MATH  Google Scholar 

  5. M. Cottrell and J.-C. Fort. Etude d’un processus d’auto-organisation. Annales de I’Institut Henri Poincare, 23(l):l–20, 1987.

    MATH  Google Scholar 

  6. J. Herault and C. Jutten. Space or time adaptive signal processing by neural net-work models. In J.S. Denker, editor, Neural Networks for Computing. Proceedings of the AIP Conference, pages 206–211, New York, 1986. American Institute of Physics.

    Google Scholar 

  7. A. Hyvarinen and E. Oja. A fast fixed-point algorithm for independent component analysis. Neural Computation, 9:1483–1492, 1997.

    Article  Google Scholar 

  8. J. Karhunen, S. Malaroiu, and M. Ilmoniemi. Local linear independent component analysis based on clustering. Int. J. of Neural Systems, 10(6), 2000.

    Google Scholar 

  9. Teuvo Kohonen. Self-organizing formation of topologically correct feature maps. Biol. Cyb., 43(l):59–69, 1982.

    Article  MathSciNet  MATH  Google Scholar 

  10. T.M. Martinetz, S.G. Berkovich, and K.J. Schulten. ‘neural-gas’ network for vector quantization and its application to time-series prediction. IEEE Transactions on Neural Networks, 4(4):558–569, 1993.

    Article  Google Scholar 

  11. P. Pajunen, A. Hyvarinen,, and J. Karhunen. Nonlinear blind source separation by self-organizing maps. Progress in Neural Information Processing, Proc. of the International Conference on Neural Information Processing (ICONIP’96), Hong Kong, 2:1207–1210, 1996.

    Google Scholar 

  12. C.G. Puntonet and A. Prieto. An adaptive geometrical procedure for blind separation of sources. Neural Processing Letters, 2, 1995.

    Google Scholar 

  13. M. Rodriguez-Alvarez, F. Rojas, C.G. Puntonet, J. Ortega, F.J. Theis, and E.W. Lang. A geometric IC A procedure based on a lattice of the observation space. ICA 2003 submitted, 2003.

    Google Scholar 

  14. F.J. Theis, A. Jung, E.W. Lang, and C.G. Puntonet. A theoretic model for geometric linear ICA. Proc. of ICA 2001, pages 349–354, 2001.

    Google Scholar 

  15. F.J. Theis, A. Jung, C.G. Puntonet, and E.W. Lang. Linear geometric ICA: Fundamentals and algorithms. Neural Computation, 15:1–21, 2002.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Theis, F.J., Alvarez, M.R., Puntonet, C.G., Lang, E.W. (2003). An Adaptive Approach to Blind Source Separation Using a Self-Organzing Map and a Neural Gas. In: Mira, J., Álvarez, J.R. (eds) Artificial Neural Nets Problem Solving Methods. IWANN 2003. Lecture Notes in Computer Science, vol 2687. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44869-1_88

Download citation

  • DOI: https://doi.org/10.1007/3-540-44869-1_88

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40211-4

  • Online ISBN: 978-3-540-44869-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics