[go: up one dir, main page]

Skip to main content

Quantifier Rank for Parity of Embedded Finite Models

  • Conference paper
  • First Online:
Mathematical Foundations of Computer Science 2001 (MFCS 2001)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2136))

  • 889 Accesses

Abstract

We are interested in the quantifier rank necessary to express the parity of an embedded set of cardinal smaller than a given bound. We consider several embedding structures like the reals with addition and order, or the field of the complex numbers. We provide both lower and upper bounds. We obtain from these results some bounds on the quantifier rank needed to express the connectivity of an embedded graph, when a bound on its number of vertices is given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. J. T. Baldwin and M. Benedikt. Stability theory, permutations of indiscernibles, and embedded finite models. Trans. Amer. Math. Soc., 352(11):4937–4969, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  2. S. Basu. New results on quantifier elimination over real closed fields and applications to constraint databases. Journal of the ACM, 46(4):537–555, july 1999.

    Google Scholar 

  3. M. Benedikt, G. Dong, L. Libkin, and L. Wong. Relational expressive power of constraint query languages. Journal of the ACM, pages 1–34, 1998.

    Google Scholar 

  4. M. Benedikt and L. Libkin. Relational queries over interpreted structures. Journal of the ACM, 47(4):644–680, 2000.

    Article  MathSciNet  Google Scholar 

  5. O. Chapuis and P. Koiran. Definability of geometric properties in algebraically closed fields. Mathematical Logic Quarterly, 45(4):533–550, 1999.

    MATH  MathSciNet  Google Scholar 

  6. H.-D. Ebbinghaus and J. Flum. Finite Model Theory. Springer-Verlag, 1995.

    Google Scholar 

  7. D. Flath and S. Wagon. How to pick out the integers in the rationals: An application of number theory to logic. American Mathematical Monthly, 98:812–823, 1991.

    Article  MATH  MathSciNet  Google Scholar 

  8. J. Flum and Ziegler M. Pseudo-finite homogeneity and saturation. Journal of Symbolic Logic, 64(4):1689–1699, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  9. S. Grumbach and J. Su. Queries with arithmetical constraints. Theoretical Computer Science, 173:151–181, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  10. W. Hodges. A Shorter Model Theory. Cambridge University Press, 1997.

    Google Scholar 

  11. N. Immerman. Descriptive Complexity. Graduate Texts in Computer Science. Springer, 1998.

    Google Scholar 

  12. G. Kuper, L. Libkin, and J. Paredaens, editors. Constraint Databases. Springer-Verlag, 2000.

    Google Scholar 

  13. D Marker. Model theory of differential fields. In Model theory of fields, number 5 in Lecture notes in logic. Springer, 1996.

    Google Scholar 

  14. J. Robinson. Definability and decision problems in arithmetic. Journal of Symbolic Logic, 14:98–114, 1949.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fournier, H. (2001). Quantifier Rank for Parity of Embedded Finite Models. In: Sgall, J., Pultr, A., Kolman, P. (eds) Mathematical Foundations of Computer Science 2001. MFCS 2001. Lecture Notes in Computer Science, vol 2136. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44683-4_33

Download citation

  • DOI: https://doi.org/10.1007/3-540-44683-4_33

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42496-3

  • Online ISBN: 978-3-540-44683-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics