[go: up one dir, main page]

Skip to main content

The Bayesian Committee Support Vector Machine

  • Conference paper
  • First Online:
Artificial Neural Networks — ICANN 2001 (ICANN 2001)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2130))

Included in the following conference series:

Abstract

Empirical evidence indicates that the training time for the support vector machine (SVM) scales to the square of the number of training data points. In this paper, we introduce the Bayesian committee support vector machine (BC-SVM) and achieve an algorithm for training the SVM which scales linearly in the number of training data points. We verify the good performance of the BC-SVM using several data sets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 189.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Cristianini, N., Shawe-Taylor, J.: Support Vector Machines. Cambridge University Press, 2000

    Google Scholar 

  2. Joachims, T.: Making Large-scale Support Vector Machine Learning Practical. In: Schölkopf, B., Burges, C.J., Smola, A.J. (eds.), Advances in Kernel Methods-Support Vector Learning. MIT Press, 1998 pages 169–184

    Google Scholar 

  3. Solla, S.A., Leen, T.K., Müller, K.R. (eds.): Advances in Neural Information Processing Systems 12. MIT Press, 2000

    Google Scholar 

  4. Sollich, P.: Probabilistic Methods for Support Vector Machines. In: Leen, T.K., Müller, K.R. (eds.): Advances in Neural Information Processing Systems 12. MIT Press Solla et al. [3], pages 349–355, 2000

    Google Scholar 

  5. Tipping, M.E.: The Relevance Vector Machine. In: Leen, T.K., Müller, K.R. (eds.): Advances in Neural Information Processing Systems 12. MIT Press Solla et al. [3], 2000

    Google Scholar 

  6. Tresp, V.: A Bayesian Committee Machine. Neural Computation 12 (2000) 2719–2741

    Article  Google Scholar 

  7. Tresp, V.: The Generalized Bayesian Committee Machine. In: Proceedings of the Sixth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Boston, MA USA, 2000

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Schwaighofer, A., Tresp, V. (2001). The Bayesian Committee Support Vector Machine. In: Dorffner, G., Bischof, H., Hornik, K. (eds) Artificial Neural Networks — ICANN 2001. ICANN 2001. Lecture Notes in Computer Science, vol 2130. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44668-0_58

Download citation

  • DOI: https://doi.org/10.1007/3-540-44668-0_58

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42486-4

  • Online ISBN: 978-3-540-44668-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics