[go: up one dir, main page]

Skip to main content

Classifying Scenarios using Belief Decision Trees

  • Conference paper
  • First Online:
Discovery Science (DS 2000)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 1967))

Included in the following conference series:

  • 373 Accesses

Abstract

In this paper, we propose a method based on the belief decision tree approach, to classify scenarios in an uncertain context. Our method uses both the decision tree technique and the belief function theory as understood in the transferable belief model in order to find the classes of the scenarios (of a given problem) that may happen in the future. Two major phases will be ensured: the construction of the belief decision tree representing the scenarios belonging to the training set and which may present some uncertainty in their class membership, this uncertainty is presented by belief functions. Then, the classification of new scenarios characterized generally by uncertain hypotheses’ configurations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Benassouli, P., Monti, R.: La planification par scénarios: le cas Axa France 2005. Futuribles, Novembre, (1995)

    Google Scholar 

  2. Breiman, L., Friedman, J. H., Olshen, R. A., Stone, C. J.: Classification and regression trees. Belmont, CA: Wadsworth, (1984)

    Google Scholar 

  3. Elouedi, Z. Mellouli, K.: Pooling dependent expert opinions using the theory of evidence The proceedings of the International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems IPMU’98 (1998), 32-39

    Google Scholar 

  4. Elouedi, Z., Mellouli K., Smets P.: Decision trees using the belief function theory the proceedings of the International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems IPMU’2000, (2000), 141–148

    Google Scholar 

  5. Elouedi Z., Mellouli K., Smets P.: Classification with belief decision trees To appear in the proceedings of The Ninth International Conference on Artificial Intelligence: Methodology, Systems, Applications, AIMSA’2000, (2000)

    Google Scholar 

  6. Godet, M.: De l’anticipation a Faction. Manuel de prospective et de stratgie, Dunod, Paris, (1991)

    Google Scholar 

  7. Godet, M., Roubelat F.: Creating the future: the use and Misuse of scenarios. Long Range Planning Vol 29 N2, (1996), 164–171

    Article  Google Scholar 

  8. Mellouli, K.: On the propagation of beliefs in network using the Dempster-Shafer theory of evidence. Ph.D dissertation School of business University of Kansas Lawrence KS (1987)

    Google Scholar 

  9. Mellouli, K., Elouedi, Z.: Pooling expert opinions using Dempster-Shafer theory of evidence The IEEE International Conference On Systems, Man, and Cybernetics, Orlondo, USA, (1997)

    Google Scholar 

  10. Quinlan, J. R.: Induction of decision trees. Machine learning 1 (1986) 81–106

    Google Scholar 

  11. Quinlan, J. R.: Decision trees and decision making. IEEE Transaction on Systems, Man and Cybernatics, Vol 20, Num2, (1990) 339–346

    Article  Google Scholar 

  12. Quinlan, J. R.: C4.5: Programs for machine learning. Morgan Kaufmann San Mateo Ca (1993)

    Google Scholar 

  13. Shafer, G.: A mathematical theory of evidence. Princeton University Press, Princeton NJ (1976)

    Google Scholar 

  14. Schwartz, P.: La planification strtegique par scenarios. Futuribles, Mai (1993)

    Google Scholar 

  15. Smets, P.: Belief functions: the disjunctive rule of combination and the generalized bayesian theorem. International Journal of Approximate Reasoning 9 (1993) 1-35

    Article  MATH  MathSciNet  Google Scholar 

  16. Smets, P., Kennes, R.: The transferable belief model. Artificial Intelligence 66 (1994) 191–234

    Article  MATH  MathSciNet  Google Scholar 

  17. Smets, P.: The transferable belief model for quantified belief representation. D. M. Gabbay and Ph. Smets (eds.) Handbook of Defeasible Reasoning and Uncertainty Management Systems 1 Kluwer Doordrecht (1998) 267-301

    Google Scholar 

  18. Smets, P.: The Application of the transferable belief Model to Diagnostic Problems Int. J. Intelligent Systems 13 (1998) 127–158

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Elouedi, Z., Mellouli, K. (2000). Classifying Scenarios using Belief Decision Trees. In: Arikawa, S., Morishita, S. (eds) Discovery Science. DS 2000. Lecture Notes in Computer Science(), vol 1967. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44418-1_11

Download citation

  • DOI: https://doi.org/10.1007/3-540-44418-1_11

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-41352-3

  • Online ISBN: 978-3-540-44418-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics