Abstract
In this paper, we propose a method based on the belief decision tree approach, to classify scenarios in an uncertain context. Our method uses both the decision tree technique and the belief function theory as understood in the transferable belief model in order to find the classes of the scenarios (of a given problem) that may happen in the future. Two major phases will be ensured: the construction of the belief decision tree representing the scenarios belonging to the training set and which may present some uncertainty in their class membership, this uncertainty is presented by belief functions. Then, the classification of new scenarios characterized generally by uncertain hypotheses’ configurations.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Benassouli, P., Monti, R.: La planification par scénarios: le cas Axa France 2005. Futuribles, Novembre, (1995)
Breiman, L., Friedman, J. H., Olshen, R. A., Stone, C. J.: Classification and regression trees. Belmont, CA: Wadsworth, (1984)
Elouedi, Z. Mellouli, K.: Pooling dependent expert opinions using the theory of evidence The proceedings of the International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems IPMU’98 (1998), 32-39
Elouedi, Z., Mellouli K., Smets P.: Decision trees using the belief function theory the proceedings of the International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems IPMU’2000, (2000), 141–148
Elouedi Z., Mellouli K., Smets P.: Classification with belief decision trees To appear in the proceedings of The Ninth International Conference on Artificial Intelligence: Methodology, Systems, Applications, AIMSA’2000, (2000)
Godet, M.: De l’anticipation a Faction. Manuel de prospective et de stratgie, Dunod, Paris, (1991)
Godet, M., Roubelat F.: Creating the future: the use and Misuse of scenarios. Long Range Planning Vol 29 N2, (1996), 164–171
Mellouli, K.: On the propagation of beliefs in network using the Dempster-Shafer theory of evidence. Ph.D dissertation School of business University of Kansas Lawrence KS (1987)
Mellouli, K., Elouedi, Z.: Pooling expert opinions using Dempster-Shafer theory of evidence The IEEE International Conference On Systems, Man, and Cybernetics, Orlondo, USA, (1997)
Quinlan, J. R.: Induction of decision trees. Machine learning 1 (1986) 81–106
Quinlan, J. R.: Decision trees and decision making. IEEE Transaction on Systems, Man and Cybernatics, Vol 20, Num2, (1990) 339–346
Quinlan, J. R.: C4.5: Programs for machine learning. Morgan Kaufmann San Mateo Ca (1993)
Shafer, G.: A mathematical theory of evidence. Princeton University Press, Princeton NJ (1976)
Schwartz, P.: La planification strtegique par scenarios. Futuribles, Mai (1993)
Smets, P.: Belief functions: the disjunctive rule of combination and the generalized bayesian theorem. International Journal of Approximate Reasoning 9 (1993) 1-35
Smets, P., Kennes, R.: The transferable belief model. Artificial Intelligence 66 (1994) 191–234
Smets, P.: The transferable belief model for quantified belief representation. D. M. Gabbay and Ph. Smets (eds.) Handbook of Defeasible Reasoning and Uncertainty Management Systems 1 Kluwer Doordrecht (1998) 267-301
Smets, P.: The Application of the transferable belief Model to Diagnostic Problems Int. J. Intelligent Systems 13 (1998) 127–158
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2000 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Elouedi, Z., Mellouli, K. (2000). Classifying Scenarios using Belief Decision Trees. In: Arikawa, S., Morishita, S. (eds) Discovery Science. DS 2000. Lecture Notes in Computer Science(), vol 1967. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44418-1_11
Download citation
DOI: https://doi.org/10.1007/3-540-44418-1_11
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-41352-3
Online ISBN: 978-3-540-44418-3
eBook Packages: Springer Book Archive