Abstract
We formulate a stochastic hybrid system model that allows us to capture a class of Markov processes known as piecewise deterministic Markov processes (PDMPs). For this class of stochastic processes we formulate a probabilistic reachability problem. Basic properties of PDMPs are reviewed and used to show that the reachability question is indeed well defined. Possible methods for computing the reach probability are then concerned.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
References
R.M. Blumenthal, R.K. Getoor, Markov Processes and Potential Theory, Academic Press, New York and London, 1968
G. Choquet, Theory of Capacities, Annales de l’Institut Fourier,Grenoble, 5, p131–291, (1953-1954)
M.G. Crandall, P.L. Lions, Viscosity Solutions of Hamilton-Jacobi Equations, Transactions of the American Mathemetical Society, 277(1), pp.1–42, May 1983.
M.H.A. Davis, Piecewise-Deterministic Markov Processes: A General Class of Non-Diffiusion Stochastic Models, Journal of the Royal Statistical Society, B, 46(3), pp. 353–388, 1984.
M.H.A. Davis, Markov Models and Optimization, Chapman & Hall, London, 1993
E.B. Dynkin. Markov Processes. vol.I, Springer-Verlag, Berlin. Göttingen. Heidelberg, 1965
M. Fukushima. Dirichlet Forms and Markov ProcessesNorth Holland, 1980
M. K. Ghosh, A. Arapostathis, S. I. Marcus, Ergodic Control of Switching Diffiusions, Siam J. Control Optim., Vol. 35, No. 6, pp. 1952–1988, November 1997.
K. Helmes, R.H. Stockbridge, Numerical Evaluation of Resovents and Laplace Transforms of Markov Processes Using Linear Programming, Math. Meth. of Oper. Res., No.53
K. Helmes, S. Röhl, R.H. Stockbridge, Computing Moments of the Exit Time Distribution for Markov Processes by Linear Programming, Math. Meth. of Oper. Res., No.49.
J. Lygeros. On Reachability and Minimum Cost Optimal Control. Technical Report CUED/F-INFENG/TR.430, Department of Engineering, University of Cambridge, 2002.
J. Hu, J. Lygeros, S. Sastry, Towards a Theory of Stochastic Hybrid Systems, HSCC 2000, pp.160–173.
P.A. Meyer, Processus de Markov, Lecture Notes in Mathematics26, Berlin, Heidelberg, New York: Springer 1967.
J. Lévy Véhel, P. Mignot, Multifractal Segmentation of Images, Fractals, 2(3), p371–377, 1994.
J. Lévy Véhel, R. Vojak, Multifractal Analysis of Choquet Capacities: Preliminary Results, Rapport de recherche, 2576, INRIA, 1995.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2003 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bujorianu, M.L., Lygeros, J. (2003). Reachability Questions in Piecewise Deterministic Markov Processes. In: Maler, O., Pnueli, A. (eds) Hybrid Systems: Computation and Control. HSCC 2003. Lecture Notes in Computer Science, vol 2623. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-36580-X_12
Download citation
DOI: https://doi.org/10.1007/3-540-36580-X_12
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-00913-9
Online ISBN: 978-3-540-36580-8
eBook Packages: Springer Book Archive