[go: up one dir, main page]

Skip to main content

Reachability Questions in Piecewise Deterministic Markov Processes

  • Conference paper
  • First Online:
Hybrid Systems: Computation and Control (HSCC 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2623))

Included in the following conference series:

Abstract

We formulate a stochastic hybrid system model that allows us to capture a class of Markov processes known as piecewise deterministic Markov processes (PDMPs). For this class of stochastic processes we formulate a probabilistic reachability problem. Basic properties of PDMPs are reviewed and used to show that the reachability question is indeed well defined. Possible methods for computing the reach probability are then concerned.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R.M. Blumenthal, R.K. Getoor, Markov Processes and Potential Theory, Academic Press, New York and London, 1968

    Google Scholar 

  2. G. Choquet, Theory of Capacities, Annales de l’Institut Fourier,Grenoble, 5, p131–291, (1953-1954)

    MathSciNet  Google Scholar 

  3. M.G. Crandall, P.L. Lions, Viscosity Solutions of Hamilton-Jacobi Equations, Transactions of the American Mathemetical Society, 277(1), pp.1–42, May 1983.

    MATH  MathSciNet  Google Scholar 

  4. M.H.A. Davis, Piecewise-Deterministic Markov Processes: A General Class of Non-Diffiusion Stochastic Models, Journal of the Royal Statistical Society, B, 46(3), pp. 353–388, 1984.

    MATH  MathSciNet  Google Scholar 

  5. M.H.A. Davis, Markov Models and Optimization, Chapman & Hall, London, 1993

    Google Scholar 

  6. E.B. Dynkin. Markov Processes. vol.I, Springer-Verlag, Berlin. Göttingen. Heidelberg, 1965

    Google Scholar 

  7. M. Fukushima. Dirichlet Forms and Markov ProcessesNorth Holland, 1980

    Google Scholar 

  8. M. K. Ghosh, A. Arapostathis, S. I. Marcus, Ergodic Control of Switching Diffiusions, Siam J. Control Optim., Vol. 35, No. 6, pp. 1952–1988, November 1997.

    Article  MATH  MathSciNet  Google Scholar 

  9. K. Helmes, R.H. Stockbridge, Numerical Evaluation of Resovents and Laplace Transforms of Markov Processes Using Linear Programming, Math. Meth. of Oper. Res., No.53

    Google Scholar 

  10. K. Helmes, S. Röhl, R.H. Stockbridge, Computing Moments of the Exit Time Distribution for Markov Processes by Linear Programming, Math. Meth. of Oper. Res., No.49.

    Google Scholar 

  11. J. Lygeros. On Reachability and Minimum Cost Optimal Control. Technical Report CUED/F-INFENG/TR.430, Department of Engineering, University of Cambridge, 2002.

    Google Scholar 

  12. J. Hu, J. Lygeros, S. Sastry, Towards a Theory of Stochastic Hybrid Systems, HSCC 2000, pp.160–173.

    Google Scholar 

  13. P.A. Meyer, Processus de Markov, Lecture Notes in Mathematics26, Berlin, Heidelberg, New York: Springer 1967.

    Google Scholar 

  14. J. Lévy Véhel, P. Mignot, Multifractal Segmentation of Images, Fractals, 2(3), p371–377, 1994.

    Article  MATH  Google Scholar 

  15. J. Lévy Véhel, R. Vojak, Multifractal Analysis of Choquet Capacities: Preliminary Results, Rapport de recherche, 2576, INRIA, 1995.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bujorianu, M.L., Lygeros, J. (2003). Reachability Questions in Piecewise Deterministic Markov Processes. In: Maler, O., Pnueli, A. (eds) Hybrid Systems: Computation and Control. HSCC 2003. Lecture Notes in Computer Science, vol 2623. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-36580-X_12

Download citation

  • DOI: https://doi.org/10.1007/3-540-36580-X_12

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-00913-9

  • Online ISBN: 978-3-540-36580-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics