Abstract
We describe a methodology for analyzing timed systems symbolically. Given a formula representing a set of timed states, we describe howto determine a new formula that represents the set of states reachable by taking a discrete transition or by advancing time. The symbolic representations are given as formulae expressed in a simple first-order logic over constraints of the form x-y ≤ d which can be combined with Boolean operators and existentially quantified. The main contribution is a way of advancing time symbolically essentially by quantifying out a special variable z which is used to represent the current zero point in time. We describe howt o model asynchronous circuits using timed guarded commands and provide examples that demonstrate the potential of the symbolic analysis.
Financially supported by a grant from the Danish Technical Research Council.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
R. Alur. Techniques for Automatic Verication of Real-Time Systems. PhD thesis, Department of Computer Science, Stanford University, 1991. 299
R. Alur and D. Dill. The theory of timed automata. In Proc. Real-Time: Theory in Practice, volume 600 of Lecture Notes in Computer Science, pages 28–73. Springer-Verlag, 1991. 275, 278, 279, 285
E. Asarin, M. Bozga, A. Kerbrat, O. Maler, M. Pnueli, and A. Rasse. Data structures for the verification of timed automata. In O. Maler, editor, Proc. International Workshop on Hybrid and Real-Time Systems, volume 1201 of Lecture Notes in Computer Science, pages 346–360, Grenoble, France, 1997. Springer-Verlag. 278
F. Balarin. Approximate reachability analysis of timed automata. In Proc. Real-Time Systems Symposium, pages 52–61. IEEE Computer Society Press, 1996. 278
E. Balas. Disjunctive programming. Annals of Discrete Mathematics, 5:3–51, 1979. 300
G. Behrmann, K. G. Larsen, J. Pearson, C. Weise, and W. Yi. Efficient timed reachability analysis using clock difference diagrams. Technical Report 99/105, DoCS, Uppsala University, 1999. 277
W. Belluomini and C. J. Myers. Efficient timing analysis algorithms for timed state space exploration. In Proc. International Symposium on Advanced Research in Asynchronous Circuits and Systems, pages 88–100, April 1997. 278
W. Belluomini and C. J. Myers. Verification of timed systems using POSETs. In Proc. Tenth International Conference on Computer-Aided Verification, pages 403–415, June 1998. 278
B. Berthomieu and M. Diaz. Modeling and verification of time dependent systems using time Petri nets. IEEE Transactions on Software Engineering, 17(3):259–273, 1991. 275, 276, 278, 279
A. Blass and Y. Gurevich. Fixed-choice and independent-choice logics. Technical Report TR-369-98, University of Michigan, August 1998. 280
P. Bouyer, C. Dufourd, E. Fleury, and A. Petit. Are timed automata updatable? In Proc. 12th International Conference on Computer-Aided Verification, volume 1855 of Lecture Notes in Computer Science, pages 464–479. Springer-Verlag, July 2000. 299
M. Bozga, O. Maler, A. Pnueli, and S. Yovine. Some progress in the symbolic verification of timed automata. In O. Grumberg, editor, Proc. Ninth International Conference on Computer-Aided Verification, volume 1254 of Lecture Notes in Computer Science, pages 179–190, 1997. 278
R. E. Bryant. Graph-based algorithms for Boolean function manipulation. IEEE Transactions on Computers, C-35(8):677–691, 1986. 274, 302
J. R. Burch. Trace Algebra for Automatic Verification of Real-Time Concurrent Systems. PhD thesis, Carnegie Mellon, August 1992. 278
J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang. Symbolic model checking: 1020 states and beyond. In Proc. Fifth Annual IEEE Symposium on Logic in Computer Science, pages 428–439. IEEE Computer Society Press, 1990. 274
S. V. Campos, E. Clarke, W. Marrero, M. Minea, and H. Hiraishi. Computing quantitative characteristics of finite-state real-time systems. In Proc. Real-Time Systems Symposium, pages 266–70. IEEE Computer Society Press, December 1994. 278
E. M. Clarke and E. A. Emerson. Design and synthesis of synchronization skeletons using branching time temporal logic. In Proc. Logics of Programs, volume 131 of Lecture Notes in Computer Science, pages 52–71. Springer-Verlag, May 1981. 274, 297
G. E. Collins. Quantifier elimination for real closed fields by cylindrical algebraic decomposition. In Proc. Second GI Conference, volume 33 of Lecture Notes in Computer Science, pages 134–183. Springer-Verlag, 1975. 301
S. A. Cook. The complexity of theorem-proving procedures. In Proc. Third Annual ACM Symposium on Theory of Computing, pages 151–158, Shaker Heights, Ohio, 1971. 301
D. C. Cooper. Theorem proving in arithmetic without multiplication. Machine Intelligence, 7:91–99, 1972. 300, 301
T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. MIT Press, 1994. 277, 300
E. W. Dijkstra. Guarded commands, nondeterminacy and formal derivation of programs. Communications of the ACM, 18(8):453–457, August 1975. 275
D. L. Dill. Timing assumptions and verification of finite-state concurrent systems. In Automatic Verification Methods for Finite State Systems, volume 407 of Lecture Notes in Computer Science, pages 197–212. Springer-Verlag, 1989. 276, 277, 278, 301
J. Ferrante and J. R. Geiser. An efficient decision procedure for the theory of rational order. Theoretical Computer Science, 4(2):227–233, 1977. 301
J. Ferrante and C. Rackoff. A decision procedure for the first order theory of real addition with order. SIAM Journal of Computing, 4(1):69–76, 1975. 301
M. J. Fischer and M. O. Rabin. Super-exponential complexity of presburger arithmetic. In Proc. SIAM-AMS Symposium in Applied Mathematics, volume 7, pages 27–41, 1974. 300
J. B. J. Fourier. Second extrait. In G. Darboux, editor, Oeuvres, pages 325–328, Paris, 1890. Gauthiers-Villars. 301, 303
K. Gödel. Über formal unentscheidbare Sätze der Principia Mathematica und verwandter System (On formal undecidable theorems in Principia Mathematica and related systems). In Monatshefte für Mathematik und Physik, volume 38, pages 173–198, 1931. 300
M. R. Greenstreet and T. Ono-Tesfaye. A fast, ASP*, RGD arbiter. In Proc. Fifth International Symposium on Advanced Research in Asynchronous Circuits and Systems, pages 173–185, Barcelona, Spain, April 1999. IEEE. 307
T. A. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine. Symbolic model checking for real-time systems. Information and Computation, 111(2):193–244, 1994. 275, 278, 297, 300
D. Hilbert and P. Bernays. Grundlagen der Mathematik, volume 2. Springer-Verlag, 1939. 280
J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages and Computation. Addison-Wesley, 1979. 300, 301
N. K. Karmarkar. A newp olynomial-time algorithm for linear programming. Proc. 16th Annual ACM Symposium on Theory of Computing, pages 302–311, 1984. 300
M. Koubarakis. Complexity results for first-order theories of temporal constraints. In J. Doyle, E. Sandewall, and P. Torasso, editors, Proc. Fourth Internatinal Conference on Principles of Knowledge Representation and Reasoning, pages 379–390, San Francisco, California, 1994. Morgan Kaufmann. 300, 301
K. G. Larsen, P. Pettersson, and W. Yi. Model-checking for real-time systems. In Proc. Tenth International Conference on Fundamentals of Computation Theory, volume 965 of Lecture Notes in Computer Science, pages 62–88, August 1995. 276, 278
K. G. Larsen, P. Pettersson, and W. Yi. Uppaal in a nutshell. International Journal on Software Tools for Technology Transfer, 1(1–2):134–152, 1997. 302
O. Maler and A. Pnueli. Timing analysis of asynchronous circuits using timed automata. In P. E. Camurati and H. Eveking, editors, Proc. Eighth International Conference on Correct Hardware Design and Verification Methods, volume 987 of Lecture Notes in Computer Science, pages 189–205. Springer-Verlag, 1995. 286
J. Møller, J. Lichtenberg, H. R. Andersen, and H. Hulgaard. Difference decision diagrams. In Proc. 13th International Conference on Computer Science Logic, volume 1683 of Lecture Notes in Computer Science, pages 111–125, Madrid, Spain, September 1999. 277, 302
J. Møller, J. Lichtenberg, H. R. Andersen, and H. Hulgaard. Fully symbolic model checking of timed systems using difference decision diagrams. In Proc. First International Workshop on Symbolic Model Checking, volume 23–2 of Electronic Notes in Theoretical Computer Science, pages 89–108, Trento, Italy, July 1999. 279
D. Oppen. A 22 2 pn upper bound on the complexity of Presburger arithmetic. Journal of Computer and System Sciences, 16:323–332, 1978. 301
C. H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994. 300
M. Presburger. Über die vollständigkeit eines gewissen systems der arithmetik ganzer zählen, in welchem die addition als einzige operation hervortritt. Comptes-Rendus du I Congres de Mathematiciens des pays Slaves, pages 92–101, 1929. 300
T. G. Rokicki. Representing and Modeling Digital Circuits. PhD thesis, Stanford University, 1993. 276, 278
T. G. Rokicki and C. J. Myers. Automatic verification of timed circuits. In D. L. Dill, editor, Proc. Sixth International Conference on Computer-Aided Verification, volume 818 of Lecture Notes in Computer Science, pages 468–480, 1994. 278
S. Bornot and J. Sifakis. An algebraic framework for urgency. Information and Computation, 163(1):172–202, 2000. 281
R. Shostak. On the SUP-INF method for proving Presburger formulas. Journal of the ACM, 4(24):529–543, October 1977. 300
A. Tarski. A Decision Method for Elementary Algebra and Geometry. University of California Press, Berkeley, CA, 2nd edition, 1951. 300, 301
E. Verlind, G. de Jong, and B. Lin. Efficient partial enumeration for timing analysis of asynchronous systems. In Proc. ACM/IEEE Design Automation Conference, pages 55–58, June 1996. 278
H. Wong-Toi and D. L. Dill. Approximations for verifying timing properties. In Theories and Experiences for Real-Time Systems Development, chapter 7, pages 177–204. World Scientific Publishing, 1994. 278
S. Yovine. Kronos: A verification tool for real-time systems. International Journal on Software Tools for Technology Transfer, 1(1–2):123–133, October 1997. 276, 278, 302
S. Yovine. Model checking timed automata. In Embedded Systems, volume 1494 of Lecture Notes in Computer Science, pages 114–152. Springer-Verlag, October 1998. 278
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2002 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Møller, J., Hulgaard, H., Reif Andersen, H. (2002). Timed Verification of Asynchronous Circuits. In: Cortadella, J., Yakovlev, A., Rozenberg, G. (eds) Concurrency and Hardware Design. Lecture Notes in Computer Science, vol 2549. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-36190-1_8
Download citation
DOI: https://doi.org/10.1007/3-540-36190-1_8
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-00199-7
Online ISBN: 978-3-540-36190-9
eBook Packages: Springer Book Archive