Abstract
In this paper, we shall prove some properties of set-valued asymptotic martingale (amart for short) and provide an optional sampling theorem. We also prove a quasi Risez decomposition theorem for set-valued amarts. Then we shall discuss the existence of selections of set-valued amarts and give a representation theorem.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
R. Aumann (1965). Integrals of set valued functions, J. Math. Anal. Appl. 12, 1–12.
S. Bagchi (1985). On a.s. convergence of classes of multivalued asymptotic martingales, Ann. Inst. H. Poincaré, Probabilités et Statistiques, 21, 313–321.
G. Beer (1993). Topologies on Closed and Closed Convex Sets, Kluwer Academic Publishers.
A. Bellow (1978). Some aspects of the theory of the vector-valued amarts, “Vector Space Measure and Applications I” (ed. R. Aron and S. Dineen), Lect. Notes Math., 644, 57–67.
A. Bellow (1978). Uniform amarts: A class of asymptotic martingales for which strong almost sure convergence obtains. Z. Wahr. verw. Gebiete, 41, 177–191.
R.V. Chacon and L. Sucheston (1975). On convergence of vector-valued asymptotic martingales. Z. Wahr. verw. Gebiete. 33, 55–59.
G.A. Edgar and L. Suchistion (1976). Amarts: A class of asympotic martingales B. Discrete parameter. J. Multiv. Anal., 6, 193–221.
G.A. Edgar and L. Suchistion (1976). Amarts: A class of asympotic martingales A. continuous parameter. J. Multiv. Anal., 6, 572–591.
G.A. Edgar and L. Suchistion (1976). The Riesz decomposition for vectorvalued amarts, Z. Wahr. verw. Gebiete. 36, 85–92.
C. Hess (1983). Measurability and integrability of the weak upper limit of a sequence of multifunctions, J. Math. Anal. Appl., 153, 226–249.
F. Hiai and H. Umegaki (1977). Integrals, conditional expectations and martingales of multivalued functions, Jour. Multiv. Anal., 7 149–182.
A. de Korvin and R. Kleyle (1985). A convergence theorem for convex set valued supermartingales. Stoch. Anal. Appl., 3, 433–445.
S. Li and Y. Ogura (1998). Convergence of set valued sub-supermartingales in the Kuratowski-Mosco sense, Ann. Probab., 26, 1384–1402.
S. Li and Y. Ogura (1999). Convergence of set valued and fuzzy valued martingals. Fuzzy Sets and Syst., 101, 453–461.
S. Li, Y. Ogura and V. Kreinovich (2002). Limit Theorems and Applications of Set-Valued and Fuzzy Sets-Valued Random Variables, Kluwer Academic Publishers.
D.Q. Luu (1981). Representations and regularity of multivalued martingales, Acta Math. Vietn., 6, 29–40.
D.Q. Luu (1984). Applications of set-valued Randon-Nikodym theorms to convergence of multivalued L 1-amarts, Math. Scand., 54, 101–114.
D.Q. Luu (1985). Quelques resultats des amarts uniform nultivoques dans les espaces de Banach, CRAS, Paris, 300, 63–65.
D.Q. Luu (1986). Representation theorems for multi-valued (regular) L 1- amarts, Math. Scand., 58, 5–22.
N.S. Papageorgiou (1985). On the theorey of Banach space valued multifunctions. 1. integration and conditional wxpectation, J. Multiv. Anal., 17, 185–206.
N.S. Papageorgiou (1987). A convergence theorem for set valued multifunctions. 2. set valued martingales and set valued measures, J. Multiv. Anal., 17, 207–227.
N.S. Papageorgiou (1995). On the conditional expectation and convergence properties of random sets. Trans. Amer. Math. Soc., 347, 2495–2515.
W.X. Zhang, Z.P. Wang and Y. Gao (1996). Set-valued random processes, Science Publisher. (in Chinese).
Z.P. Wang and X. Xue (1994). On convergence and closedness of multivalued martingales, Trans. Ameri. Math. Soc., 341, 807–827.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer
About this chapter
Cite this chapter
Li, S., Guan, L. (2006). Optional Sampling Theorem and Representation of Set-Valued Amart. In: Lawry, J., et al. Soft Methods for Integrated Uncertainty Modelling. Advances in Soft Computing, vol 37. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-34777-1_18
Download citation
DOI: https://doi.org/10.1007/3-540-34777-1_18
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-34776-7
Online ISBN: 978-3-540-34777-4
eBook Packages: EngineeringEngineering (R0)