[go: up one dir, main page]

Skip to main content

Optional Sampling Theorem and Representation of Set-Valued Amart

  • Chapter
Soft Methods for Integrated Uncertainty Modelling

Part of the book series: Advances in Soft Computing ((AINSC,volume 37))

  • 615 Accesses

Abstract

In this paper, we shall prove some properties of set-valued asymptotic martingale (amart for short) and provide an optional sampling theorem. We also prove a quasi Risez decomposition theorem for set-valued amarts. Then we shall discuss the existence of selections of set-valued amarts and give a representation theorem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. R. Aumann (1965). Integrals of set valued functions, J. Math. Anal. Appl. 12, 1–12.

    Article  MATH  MathSciNet  Google Scholar 

  2. S. Bagchi (1985). On a.s. convergence of classes of multivalued asymptotic martingales, Ann. Inst. H. Poincaré, Probabilités et Statistiques, 21, 313–321.

    MATH  MathSciNet  Google Scholar 

  3. G. Beer (1993). Topologies on Closed and Closed Convex Sets, Kluwer Academic Publishers.

    Google Scholar 

  4. A. Bellow (1978). Some aspects of the theory of the vector-valued amarts, “Vector Space Measure and Applications I” (ed. R. Aron and S. Dineen), Lect. Notes Math., 644, 57–67.

    Google Scholar 

  5. A. Bellow (1978). Uniform amarts: A class of asymptotic martingales for which strong almost sure convergence obtains. Z. Wahr. verw. Gebiete, 41, 177–191.

    Article  MATH  MathSciNet  Google Scholar 

  6. R.V. Chacon and L. Sucheston (1975). On convergence of vector-valued asymptotic martingales. Z. Wahr. verw. Gebiete. 33, 55–59.

    Article  MATH  MathSciNet  Google Scholar 

  7. G.A. Edgar and L. Suchistion (1976). Amarts: A class of asympotic martingales B. Discrete parameter. J. Multiv. Anal., 6, 193–221.

    Article  Google Scholar 

  8. G.A. Edgar and L. Suchistion (1976). Amarts: A class of asympotic martingales A. continuous parameter. J. Multiv. Anal., 6, 572–591.

    Article  Google Scholar 

  9. G.A. Edgar and L. Suchistion (1976). The Riesz decomposition for vectorvalued amarts, Z. Wahr. verw. Gebiete. 36, 85–92.

    Article  MATH  Google Scholar 

  10. C. Hess (1983). Measurability and integrability of the weak upper limit of a sequence of multifunctions, J. Math. Anal. Appl., 153, 226–249.

    Article  MathSciNet  Google Scholar 

  11. F. Hiai and H. Umegaki (1977). Integrals, conditional expectations and martingales of multivalued functions, Jour. Multiv. Anal., 7 149–182.

    Article  MATH  MathSciNet  Google Scholar 

  12. A. de Korvin and R. Kleyle (1985). A convergence theorem for convex set valued supermartingales. Stoch. Anal. Appl., 3, 433–445.

    Article  MATH  Google Scholar 

  13. S. Li and Y. Ogura (1998). Convergence of set valued sub-supermartingales in the Kuratowski-Mosco sense, Ann. Probab., 26, 1384–1402.

    Article  MATH  MathSciNet  Google Scholar 

  14. S. Li and Y. Ogura (1999). Convergence of set valued and fuzzy valued martingals. Fuzzy Sets and Syst., 101, 453–461.

    Article  MATH  MathSciNet  Google Scholar 

  15. S. Li, Y. Ogura and V. Kreinovich (2002). Limit Theorems and Applications of Set-Valued and Fuzzy Sets-Valued Random Variables, Kluwer Academic Publishers.

    Google Scholar 

  16. D.Q. Luu (1981). Representations and regularity of multivalued martingales, Acta Math. Vietn., 6, 29–40.

    MATH  Google Scholar 

  17. D.Q. Luu (1984). Applications of set-valued Randon-Nikodym theorms to convergence of multivalued L 1-amarts, Math. Scand., 54, 101–114.

    MATH  MathSciNet  Google Scholar 

  18. D.Q. Luu (1985). Quelques resultats des amarts uniform nultivoques dans les espaces de Banach, CRAS, Paris, 300, 63–65.

    MATH  Google Scholar 

  19. D.Q. Luu (1986). Representation theorems for multi-valued (regular) L 1- amarts, Math. Scand., 58, 5–22.

    MATH  MathSciNet  Google Scholar 

  20. N.S. Papageorgiou (1985). On the theorey of Banach space valued multifunctions. 1. integration and conditional wxpectation, J. Multiv. Anal., 17, 185–206.

    Article  MATH  Google Scholar 

  21. N.S. Papageorgiou (1987). A convergence theorem for set valued multifunctions. 2. set valued martingales and set valued measures, J. Multiv. Anal., 17, 207–227.

    Article  Google Scholar 

  22. N.S. Papageorgiou (1995). On the conditional expectation and convergence properties of random sets. Trans. Amer. Math. Soc., 347, 2495–2515.

    Article  MATH  MathSciNet  Google Scholar 

  23. W.X. Zhang, Z.P. Wang and Y. Gao (1996). Set-valued random processes, Science Publisher. (in Chinese).

    Google Scholar 

  24. Z.P. Wang and X. Xue (1994). On convergence and closedness of multivalued martingales, Trans. Ameri. Math. Soc., 341, 807–827.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Li, S., Guan, L. (2006). Optional Sampling Theorem and Representation of Set-Valued Amart. In: Lawry, J., et al. Soft Methods for Integrated Uncertainty Modelling. Advances in Soft Computing, vol 37. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-34777-1_18

Download citation

  • DOI: https://doi.org/10.1007/3-540-34777-1_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-34776-7

  • Online ISBN: 978-3-540-34777-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics