Abstract
DIVCLUS-T is a descendant hierarchical clustering method based on the same monothetic approach than classification and regression trees but from an unsupervised point of view. The aim is not to predict a continuous variable (regression) or a categorical variable (classification) but to construct a hierarchy. The dendrogram of the hierarchy is easy to interpret and can be read as decision tree. An example of this new type of dendrogram is given on a small categorical dataset. DIVCLUS-T is then compared empirically with two polythetic clustering methods: the Ward ascendant hierarchical clustering method and the k-means partitional method. The three algorithms are applied and compared on six databases of the UCI Machine Learning repository.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
BREIMAN, L., FRIEDMAN, J.H., OLSHEN, R.A. and STONE, C.J. (1984): Classification and regression Trees, C.A: Wadsworth.
CHAVENT, M. (1998): A monothetic clustering method. Pattern Recognition Letters, 19, 989–996.
CHAVENT, M., GUINOT, C., LECHEVALLIER Y. and TENENHAUS, M. (1999): Méthodes divisives de classification et segmentation non supervisée: recherche d’une typologie de la peau humaine saine. Revue Statistique Appliquée, XLVII(4), 87–99.
CHAVENT, M., DING, Y., FU, L., STOLOWY H., and WANG, H. (2005): Disclosure and Determinants Studies: An extension Using the Divisive Clustering Method (DIV). European Accounting Review, to publish.
CHAVENT, M., BRIANT, O. and LECHEVALLIER, Y. (2006): DIVCLUS-T: a new descendant hierarchical clustering method. Internal report U-05-15, Laboratoire de Mathématiques Appliquées de Bordeaux.
HETTICH, S., BLAKE, C.L. and MERZ, C.J. (1998): UCI Repository of machine learning databases, http://www.ics.uci.edu/mlearn/MLRepository.html. Irvine, CA: University of California, Department of Information and Computer Science.
MORGAN, J.N. and SONQUIST, J.A. (1963): Problems in the analysis of survey data, and proposal. J. Aler. Statist. Assoc., 58, 415–434.
PIRCON, J.-Y. (2004): La classification et les processus de Poisson pour de nouvelles méthodes de partitionnement. Phd Thesis, Facultés Universitaires Notre-Dame de la Paix, Belgium.
SAPORTA, G. (1990): Probabilités Analyse des données et Statistique, Editions TECHNIP.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin · Heidelberg
About this paper
Cite this paper
Chavent, M., Lechevallier, Y. (2006). Empirical Comparison of a Monothetic Divisive Clustering Method with the Ward and the k-means Clustering Methods. In: Batagelj, V., Bock, HH., Ferligoj, A., Žiberna, A. (eds) Data Science and Classification. Studies in Classification, Data Analysis, and Knowledge Organization. Springer, Berlin, Heidelberg . https://doi.org/10.1007/3-540-34416-0_10
Download citation
DOI: https://doi.org/10.1007/3-540-34416-0_10
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-34415-5
Online ISBN: 978-3-540-34416-2
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)