[go: up one dir, main page]

Skip to main content

Empirical Comparison of a Monothetic Divisive Clustering Method with the Ward and the k-means Clustering Methods

  • Conference paper
Data Science and Classification

Abstract

DIVCLUS-T is a descendant hierarchical clustering method based on the same monothetic approach than classification and regression trees but from an unsupervised point of view. The aim is not to predict a continuous variable (regression) or a categorical variable (classification) but to construct a hierarchy. The dendrogram of the hierarchy is easy to interpret and can be read as decision tree. An example of this new type of dendrogram is given on a small categorical dataset. DIVCLUS-T is then compared empirically with two polythetic clustering methods: the Ward ascendant hierarchical clustering method and the k-means partitional method. The three algorithms are applied and compared on six databases of the UCI Machine Learning repository.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • BREIMAN, L., FRIEDMAN, J.H., OLSHEN, R.A. and STONE, C.J. (1984): Classification and regression Trees, C.A: Wadsworth.

    MATH  Google Scholar 

  • CHAVENT, M. (1998): A monothetic clustering method. Pattern Recognition Letters, 19, 989–996.

    Article  MATH  Google Scholar 

  • CHAVENT, M., GUINOT, C., LECHEVALLIER Y. and TENENHAUS, M. (1999): Méthodes divisives de classification et segmentation non supervisée: recherche d’une typologie de la peau humaine saine. Revue Statistique Appliquée, XLVII(4), 87–99.

    Google Scholar 

  • CHAVENT, M., DING, Y., FU, L., STOLOWY H., and WANG, H. (2005): Disclosure and Determinants Studies: An extension Using the Divisive Clustering Method (DIV). European Accounting Review, to publish.

    Google Scholar 

  • CHAVENT, M., BRIANT, O. and LECHEVALLIER, Y. (2006): DIVCLUS-T: a new descendant hierarchical clustering method. Internal report U-05-15, Laboratoire de Mathématiques Appliquées de Bordeaux.

    Google Scholar 

  • HETTICH, S., BLAKE, C.L. and MERZ, C.J. (1998): UCI Repository of machine learning databases, http://www.ics.uci.edu/mlearn/MLRepository.html. Irvine, CA: University of California, Department of Information and Computer Science.

    Google Scholar 

  • MORGAN, J.N. and SONQUIST, J.A. (1963): Problems in the analysis of survey data, and proposal. J. Aler. Statist. Assoc., 58, 415–434.

    Article  MATH  Google Scholar 

  • PIRCON, J.-Y. (2004): La classification et les processus de Poisson pour de nouvelles méthodes de partitionnement. Phd Thesis, Facultés Universitaires Notre-Dame de la Paix, Belgium.

    Google Scholar 

  • SAPORTA, G. (1990): Probabilités Analyse des données et Statistique, Editions TECHNIP.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin · Heidelberg

About this paper

Cite this paper

Chavent, M., Lechevallier, Y. (2006). Empirical Comparison of a Monothetic Divisive Clustering Method with the Ward and the k-means Clustering Methods. In: Batagelj, V., Bock, HH., Ferligoj, A., Žiberna, A. (eds) Data Science and Classification. Studies in Classification, Data Analysis, and Knowledge Organization. Springer, Berlin, Heidelberg . https://doi.org/10.1007/3-540-34416-0_10

Download citation

Publish with us

Policies and ethics