[go: up one dir, main page]

Skip to main content

Anion Channels of Mitochondria

  • Chapter
  • First Online:
Pharmacology of Mitochondria

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 240))

Abstract

Mitochondria are the “power house” of a cell continuously generating ATP to ensure its proper functioning. The constant production of ATP via oxidative phosphorylation demands a large electrochemical force that drives protons across the highly selective and low-permeable mitochondrial inner membrane. Besides the conventional role of generating ATP, mitochondria also play an active role in calcium signaling, generation of reactive oxygen species (ROS), stress responses, and regulation of cell-death pathways. Deficiencies in these functions result in several pathological disorders like aging, cancer, diabetes, neurodegenerative and cardiovascular diseases. A plethora of ion channels and transporters are present in the mitochondrial inner and outer membranes which work in concert to preserve the ionic equilibrium of a cell for the maintenance of cell integrity, in physiological as well as pathophysiological conditions. For, e.g., mitochondrial cation channels KATP and BKCa play a significant role in cardioprotection from ischemia–reperfusion injury. In addition to the cation channels, mitochondrial anion channels are equally essential, as they aid in maintaining electro-neutrality by regulating the cell volume and pH. This chapter focusses on the information on molecular identity, structure, function, and physiological relevance of mitochondrial chloride channels such as voltage dependent anion channels (VDACs), uncharacterized mitochondrial inner membrane anion channels (IMACs), chloride intracellular channels (CLIC) and the aspects of forthcoming chloride channels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abu-Hamad S, Arbel N, Calo D, Arzoine L, Israelson A, Keinan N, Ben-Romano R, Friedman O, Shoshan-Barmatz V (2009) The VDAC1 n-terminus is essential both for apoptosis and the protective effect of anti-apoptotic proteins. J Cell Sci 122:1906–1916

    Article  CAS  PubMed  Google Scholar 

  • Akar FG, Aon MA, Tomaselli GF, O’Rourke B (2005) The mitochondrial origin of postischemic arrhythmias. J Clin Invest 115:3527–3535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Al Khamici H, Brown LJ, Hossain KR, Hudson AL, Sinclair-Burton AA, Ng JP, Daniel EL, Hare JE, Cornell BA, Curmi PM, Davey MW, Valenzuela SM (2015) Members of the chloride intracellular ion channel protein family demonstrate glutaredoxin-like enzymatic activity. PLoS One 10, e115699

    Article  PubMed  PubMed Central  Google Scholar 

  • Aon MA, Cortassa S, Akar FG, O’Rourke B (1762) Mitochondrial criticality: a new concept at the turning point of life or death. Biochim Biophys Acta 2006:232–240

    Google Scholar 

  • Aon MA, Cortassa S, Marban E, O’Rourke B (2003) Synchronized whole cell oscillations in mitochondrial metabolism triggered by a local release of reactive oxygen species in cardiac myocytes. J Biol Chem 278:44735–44744

    Article  CAS  PubMed  Google Scholar 

  • Arbel N, Ben-Hail D, Shoshan-Barmatz V (2012) Mediation of the antiapoptotic activity of Bcl-xL protein upon interaction with VDAC1 protein. J Biol Chem 287:23152–23161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ashley RH (2003) Challenging accepted ion channel biology: P64 and the CLIC family of putative intracellular anion channel proteins (review). Mol Membr Biol 20:1–11

    Article  CAS  PubMed  Google Scholar 

  • Averaimo S, Abeti R, Savalli N, Brown LJ, Curmi PM, Breit SN, Mazzanti M (2013) Point mutations in the transmembrane region of the CLIC1 ion channel selectively modify its biophysical properties. PLoS One 8, e74523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Azzi A, Azzone GF (1965) Swelling and shrinkage phenomena in liver mitochondria. Ii. Low amplitude swelling-shrinkage cycles. Biochim Biophys Acta 105:265–278

    Article  CAS  PubMed  Google Scholar 

  • Azzi A, Azzone GF (1967) Swelling and shrinkage phenomena in liver mitochondria. Vi. Metabolism-independent swelling coupled to ion movement. Biochim Biophys Acta 131:468–478

    Google Scholar 

  • Bahamonde MI, Fernandez-Fernandez JM, Guix FX, Vazquez E, Valverde MA (2003) Plasma membrane voltage-dependent anion channel mediates antiestrogen-activated maxi cl- currents in c1300 neuroblastoma cells. J Biol Chem 278:33284–33289

    Article  CAS  PubMed  Google Scholar 

  • Baines CP, Kaiser RA, Sheiko T, Craigen WJ, Molkentin JD (2007) Voltage-dependent anion channels are dispensable for mitochondrial-dependent cell death. Nat Cell Biol 9:550–555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ballarin C, Sorgato MC (1995) An electrophysiological study of yeast mitochondria. Evidence for two inner membrane anion channels sensitive to ATP. J Biol Chem 270:19262–19268

    Article  CAS  PubMed  Google Scholar 

  • Ballarin C, Sorgato MC (1996) Anion channels of the inner membrane of mammalian and yeast mitochondria. J Bioenerg Biomembr 28:125–130

    Article  CAS  PubMed  Google Scholar 

  • Banerjee J, Ghosh S (2004) Bax increases the pore size of rat brain mitochondrial voltage-dependent anion channel in the presence of tBid. Biochem Biophys Res Commun 323:310–314

    Article  CAS  PubMed  Google Scholar 

  • Banerjee J, Ghosh S (2006) Phosphorylation of rat brain mitochondrial voltage-dependent anion as a potential tool to control leakage of cytochrome c. J Neurochem 98:670–676

    Article  CAS  PubMed  Google Scholar 

  • Bates E (2015) Ion channels in development and cancer. Annu Rev Cell Dev Biol 31:231–247

    Article  CAS  PubMed  Google Scholar 

  • Baumgarten CM, Browe DM, Ren Z (2005) Swelling- and stretch-activated chloride channels in the heart: regulation and function. In: Kamkin A, Kiseleva I (eds) Mechanosensitivity in cells and tissues. Academia, Moscow, pp 79–102

    Google Scholar 

  • Bayrhuber M, Meins T, Habeck M, Becker S, Giller K, Villinger S, Vonrhein C, Griesinger C, Zweckstetter M, Zeth K (2008) Structure of the human voltage-dependent anion channel. Proc Natl Acad Sci U S A 105:15370–15375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beavis AD (1992) Properties of the inner membrane anion channel in intact mitochondria. J Bioenerg Biomembr 24:77–90

    Article  CAS  PubMed  Google Scholar 

  • Beavis AD, Davatol-Hag H (1996) The mitochondrial inner membrane anion channel is inhibited by dids. J Bioenerg Biomembr 28:207–214

    Article  CAS  PubMed  Google Scholar 

  • Beavis AD, Vercesi AE (1992) Anion uniport in plant mitochondria is mediated by a mg(2+)-insensitive inner membrane anion channel. J Biol Chem 267:3079–3087

    CAS  PubMed  Google Scholar 

  • Bera AK, Ghosh S (2001) Dual mode of gating of voltage-dependent anion channel as revealed by phosphorylation. J Struct Biol 135:67–72

    Article  CAS  PubMed  Google Scholar 

  • Bernardi P, Krauskopf A, Basso E, Petronilli V, Blachly-Dyson E, Di Lisa F, Forte MA (2006) The mitochondrial permeability transition from in vitro artifact to disease target. FEBS J 273:2077–2099

    Article  CAS  PubMed  Google Scholar 

  • Berry KL, Bulow HE, Hall DH, Hobert O (2003) A C. Elegans CLIC-like protein required for intracellular tube formation and maintenance. Science 302:2134–2137

    Google Scholar 

  • Berryman M, Bruno J, Price J, Edwards JC (2004) CLIC-5A functions as a chloride channel in vitro and associates with the cortical actin cytoskeleton in vitro and in vivo. J Biol Chem 279:34794–34801

    Article  CAS  PubMed  Google Scholar 

  • Betaneli V, Petrov EP, Schwille P (2012) The role of lipids in VDAC oligomerization. Biophys J 102:523–531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beutner G, Ruck A, Riede B, Welte W, Brdiczka D (1996) Complexes between kinases, mitochondrial porin and adenylate translocator in rat brain resemble the permeability transition pore. FEBS Lett 396:189–195

    Article  CAS  PubMed  Google Scholar 

  • Board PG, Coggan M, Watson S, Gage PW, Dulhunty AF (2004) CLIC-2 modulates cardiac ryanodine receptor Ca2+ release channels. Int J Biochem Cell Biol 36:1599–1612

    Article  CAS  PubMed  Google Scholar 

  • Bonora M, Bononi A, De Marchi E, Giorgi C, Lebiedzinska M, Marchi S, Patergnani S, Rimessi A, Suski JM, Wojtala A, Wieckowski MR, Kroemer G, Galluzzi L, Pinton P (2013) Role of the c subunit of the FO ATP synthase in mitochondrial permeability transition. Cell Cycle 12:674–683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boquet P, Ricci V, Galmiche A, Gauthier NC (2003) Gastric cell apoptosis and h. Pylori: has the main function of VacA finally been identified? Trends Microbiol 11:410–413

    Article  CAS  PubMed  Google Scholar 

  • Borecky J, Jezek P, Siemen D (1997) 108-ps channel in brown fat mitochondria might be identical to the inner membrane anion channel. J Biol Chem 272:19282–19289

    CAS  PubMed  Google Scholar 

  • Bose T, Cieslar-Pobuda A, Wiechec E (2015) Role of ion channels in regulating ca (2)(+) homeostasis during the interplay between immune and cancer cells. Cell Death Dis 6, e1648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bourke RS, Waldman JB, Kimelberg HK, Barron KD, San Filippo BD, Popp AJ, Nelson LR (1981) Adenosine-stimulated astroglial swelling in cat cerebral cortex in vivo with total inhibition by a non-diuretic acylaryloxyacid derivative. J Neurosurg 55:364–370

    Article  CAS  PubMed  Google Scholar 

  • Brdiczka D, Kaldis P, Wallimann T (1994) In vitro complex formation between the octamer of mitochondrial creatine kinase and porin. J Biol Chem 269:27640–27644

    CAS  PubMed  Google Scholar 

  • Brierley GP (1969) Energy-linked alteration of mitochondrial permeability to anions. Biochem Biophys Res Commun 35:396–402

    Article  CAS  PubMed  Google Scholar 

  • Broekemeier KM, Dempsey ME, Pfeiffer DR (1989) Cyclosporin a is a potent inhibitor of the inner membrane permeability transition in liver mitochondria. J Biol Chem 264:7826–7830

    CAS  PubMed  Google Scholar 

  • Buettner R, Papoutsoglou G, Scemes E, Spray DC, Dermietzel R (2000) Evidence for secretory pathway localization of a voltage-dependent anion channel isoform. Proc Natl Acad Sci U S A 97:3201–3206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Checchetto V, Reina S, Magri A, Szabo I, De Pinto V (2014) Recombinant human voltage dependent anion selective channel isoform 3 (hVDAC3) forms pores with a very small conductance. Cell Physiol Biochem 34:842–853

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Craigen WJ, Riley DJ (2009) Nek1 regulates cell death and mitochondrial membrane permeability through phosphorylation of VDAC1. Cell Cycle 8:257–267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Y, Gaczynska M, Osmulski P, Polci R, Riley DJ (2010) Phosphorylation by nek1 regulates opening and closing of voltage dependent anion channel 1. Biochem Biophys Res Commun 394:798–803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng EH, Sheiko TV, Fisher JK, Craigen WJ, Korsmeyer SJ (2003) VDAC2 inhibits BAK activation and mitochondrial apoptosis. Science 301:513–517

    Article  CAS  PubMed  Google Scholar 

  • Chuang JZ, Milner TA, Zhu M, Sung CH (1999) A 29 kDa intracellular chloride channel p64H1 is associated with large dense-core vesicles in rat hippocampal neurons. J Neurosci 19:2919–2928

    CAS  PubMed  Google Scholar 

  • Colombini M (1979) A candidate for the permeability pathway of the outer mitochondrial membrane. Nature 279:643–645

    Article  CAS  PubMed  Google Scholar 

  • Colombini M (2004) VDAC: the channel at the interface between mitochondria and the cytosol. Mol Cell Biochem 256–257:107–115

    Article  PubMed  Google Scholar 

  • Colombini M (2012) Mitochondrial outer membrane channels. Chem Rev 112:6373–6387

    Article  CAS  PubMed  Google Scholar 

  • Colombini M, Mannella CA (1818) VDAC, the early days. Biochim Biophys Acta 2012:1438–1443

    Google Scholar 

  • Cover TL, Blanke SR (2005) Helicobacter pylori VacA, a paradigm for toxin multifunctionality. Nat Rev Microbiol 3:320–332

    Article  CAS  PubMed  Google Scholar 

  • Crompton M, Ellinger H, Costi A (1988) Inhibition by cyclosporin a of a Ca2 + −dependent pore in heart mitochondria activated by inorganic phosphate and oxidative stress. Biochem J 255:357–360

    CAS  PubMed  PubMed Central  Google Scholar 

  • Czajkowsky DM, Iwamoto H, Cover TL, Shao Z (1999) The vacuolating toxin from helicobacter pylori forms hexameric pores in lipid bilayers at low pH. Proc Natl Acad Sci U S A 96:2001–2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Das S, Wong R, Rajapakse N, Murphy E, Steenbergen C (2008) Glycogen synthase kinase 3 inhibition slows mitochondrial adenine nucleotide transport and regulates voltage-dependent anion channel phosphorylation. Circ Res 103:983–991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davidson AM, Halestrap AP (1990) Partial inhibition by cyclosporin a of the swelling of liver mitochondria in vivo and in vitro induced by sub-micromolar [Ca2+], but not by butyrate. Evidence for two distinct swelling mechanisms. Biochem J 268:147–152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Marchi U, Szabo I, Cereghetti GM, Hoxha P, Craigen WJ, Zoratti M (1777) A maxi-chloride channel in the inner membrane of mammalian mitochondria. Biochim Biophys Acta 2008:1438–1448

    Google Scholar 

  • De Marchi U, Basso E, Szabo I, Zoratti M (2006) Electrophysiological characterization of the cyclophilin D-deleted mitochondrial permeability transition pore. Mol Membr Biol 23:521–530

    Article  PubMed  CAS  Google Scholar 

  • De Pinto V, Ludwig O, Krause J, Benz R, Palmieri F (1987) Porin pores of mitochondrial outer membranes from high and low eukaryotic cells: biochemical and biophysical characterization. Biochim Biophys Acta 894:109–119

    Article  PubMed  Google Scholar 

  • De Pinto V, Messina A, Lane DJ, Lawen A (2010) Voltage-dependent anion-selective channel (VDAC) in the plasma membrane. FEBS Lett 584:1793–1799

    Article  PubMed  CAS  Google Scholar 

  • Decher N, Lang HJ, Nilius B, Bruggemann A, Busch AE, Steinmeyer K (2001) DCPIB is a novel selective blocker of I(Cl, swell) and prevents swelling-induced shortening of guinea-pig atrial action potential duration. Br J Pharmacol 134:1467–1479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Diaz RJ, Losito VA, Mao GD, Ford MK, Backx PH, Wilson GJ (1999) Chloride channel inhibition blocks the protection of ischemic preconditioning and hypo-osmotic stress in rabbit ventricular myocardium. Circ Res 84:763–775

    Article  CAS  PubMed  Google Scholar 

  • Diaz RJ, Hinek A, Wilson GJ (2010) Direct evidence of chloride ion efflux in ischaemic and pharmacological preconditioning of cultured cardiomyocytes. Cardiovasc Res 87:545–551

    Article  CAS  PubMed  Google Scholar 

  • Duan DD (2013) Phenomics of cardiac chloride channels. Compr Physiol 3:667–692

    PubMed  PubMed Central  Google Scholar 

  • Duncan RR, Westwood PK, Boyd A, Ashley RH (1997) Rat brain p64H1, expression of a new member of the p64 chloride channel protein family in endoplasmic reticulum. J Biol Chem 272:23880–23886

    Article  CAS  PubMed  Google Scholar 

  • Edwards JC, Kahl CR (2010) Chloride channels of intracellular membranes. FEBS Lett 584:2102–2111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edwards JC, Tulk B, Schlesinger PH (1998) Functional expression of p64, an intracellular chloride channel protein. J Membr Biol 163:119–127

    Article  CAS  PubMed  Google Scholar 

  • Elinder F, Akanda N, Tofighi R, Shimizu S, Tsujimoto Y, Orrenius S, Ceccatelli S (2005) Opening of plasma membrane voltage-dependent anion channels (VDAC) precedes caspase activation in neuronal apoptosis induced by toxic stimuli. Cell Death Differ 12:1134–1140

    Article  CAS  PubMed  Google Scholar 

  • Elter A, Hartel A, Sieben C, Hertel B, Fischer-Schliebs E, Luttge U, Moroni A, Thiel G (2007) A plant homolog of animal chloride intracellular channels (CLICs) generates an ion conductance in heterologous systems. J Biol Chem 282:8786–8792

    Article  CAS  PubMed  Google Scholar 

  • Fernandez-Salas E, Sagar M, Cheng C, Yuspa SH, Weinberg WC (1999) P53 and tumor necrosis factor alpha regulate the expression of a mitochondrial chloride channel protein. J Biol Chem 274:36488–36497

    Article  CAS  PubMed  Google Scholar 

  • Fernandez-Salas E, Suh KS, Speransky VV, Bowers WL, Levy JM, Adams T, Pathak KR, Edwards LE, Hayes DD, Cheng C, Steven AC, Weinberg WC, Yuspa SH (2002) MtCLIC/CLIC4, an organellular chloride channel protein, is increased by DNA damage and participates in the apoptotic response to p53. Mol Cell Biol 22:3610–3620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feske S, Wulff H, Skolnik EY (2015) Ion channels in innate and adaptive immunity. Annu Rev Immunol 33:291–353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fournier N, Ducet G, Crevat A (1987) Action of cyclosporine on mitochondrial calcium fluxes. J Bioenerg Biomembr 19:297–303

    Article  CAS  PubMed  Google Scholar 

  • Garlid KD, Beavis AD (1986) Evidence for the existence of an inner membrane anion channel in mitochondria. Biochim Biophys Acta 853:187–204

    Article  CAS  PubMed  Google Scholar 

  • Gincel D, Zaid H, Shoshan-Barmatz V (2001) Calcium binding and translocation by the voltage-dependent anion channel: a possible regulatory mechanism in mitochondrial function. Biochem J 358:147–155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Godbole A, Varghese J, Sarin A, Mathew MK (1642) VDAC is a conserved element of death pathways in plant and animal systems. Biochim Biophys Acta 2003:87–96

    Google Scholar 

  • Gupta R, Ghosh S (2015) Phosphorylation of voltage-dependent anion channel by c-jun n-terminal kinase-3 leads to closure of the channel. Biochem Biophys Res Commun 459:100–106

    Article  CAS  PubMed  Google Scholar 

  • Halestrap AP (2014) The C ring of the F1FO ATP synthase forms the mitochondrial permeability transition pore: a critical appraisal. Front Oncol 4:234

    Article  PubMed  PubMed Central  Google Scholar 

  • Halestrap AP, Clarke SJ, Javadov SA (2004) Mitochondrial permeability transition pore opening during myocardial reperfusion–a target for cardioprotection. Cardiovasc Res 61:372–385

    Article  CAS  PubMed  Google Scholar 

  • Halle-Smith SC, Murray AG, Selwyn MJ (1988) Palmitoyl-coa inhibits the mitochondrial inner membrane anion-conducting channel. FEBS Lett 236:155–158

    Article  CAS  PubMed  Google Scholar 

  • Hayman KA, Spurway TD, Ashley RH (1993) Single anion channels reconstituted from cardiac mitoplasts. J Membr Biol 136:181–190

    Article  CAS  PubMed  Google Scholar 

  • Herick K, Kramer R, Luhring H (1997) Patch clamp investigation into the phosphate carrier from saccharomyces cerevisiae mitochondria. Biochim Biophys Acta 1321:207–220

    Article  CAS  PubMed  Google Scholar 

  • Hiller S, Garces RG, Malia TJ, Orekhov VY, Colombini M, Wagner G (2008) Solution structure of the integral human membrane protein VDAC-1 in detergent micelles. Science 321:1206–1210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoang T, Matovic T, Parker J, Smith MD, Jelokhani-Niaraki M (2015) Role of positively charged residues of the second transmembrane domain in the ion transport activity and conformation of human uncoupling protein-2. Biochemistry 54:2303–2313

    Article  CAS  PubMed  Google Scholar 

  • Huang SG, Klingenberg M (1996) Chloride channel properties of the uncoupling protein from brown adipose tissue mitochondria: a patch-clamp study. Biochemistry 35:16806–16814

    Article  CAS  PubMed  Google Scholar 

  • Hunter DR, Haworth RA, Southard JH (1976) Relationship between configuration, function, and permeability in calcium-treated mitochondria. J Biol Chem 251:5069–5077

    CAS  PubMed  Google Scholar 

  • Iwamoto H, Czajkowsky DM, Cover TL, Szabo G, Shao Z (1999) VacA from helicobacter pylori: a hexameric chloride channel. FEBS Lett 450:101–104

    Article  CAS  PubMed  Google Scholar 

  • Jentsch TJ, Stein V, Weinreich F, Zdebik AA (2002) Molecular structure and physiological function of chloride channels. Physiol Rev 82:503–568

    Article  CAS  PubMed  Google Scholar 

  • Jentsch TJ, Hubner CA, Fuhrmann JC (2004) Ion channels: function unravelled by dysfunction. Nat Cell Biol 6:1039–1047

    Article  CAS  PubMed  Google Scholar 

  • Jezek P, Orosz DE, Garlid KD (1990) Reconstitution of the uncoupling protein of brown adipose tissue mitochondria. Demonstration of GDP-sensitive halide anion uniport. J Biol Chem 265:19296–19302

    CAS  PubMed  Google Scholar 

  • Kerner J, Lee K, Tandler B, Hoppel CL (1818) VDAC proteomics: post-translation modifications. Biochim Biophys Acta 2012:1520–1525

    Google Scholar 

  • Kinnally KW, Antonsson B (2007) A tale of two mitochondrial channels, MAC and PTP, in apoptosis. Apoptosis 12:857–868

    Article  CAS  PubMed  Google Scholar 

  • Kinnally KW, Zorov D, Antonenko Y, Perini S (1991) Calcium modulation of mitochondrial inner membrane channel activity. Biochem Biophys Res Commun 176:1183–1188

    Article  CAS  PubMed  Google Scholar 

  • Kinnally KW, Antonenko YN, Zorov DB (1992) Modulation of inner mitochondrial membrane channel activity. J Bioenerg Biomembr 24:99–110

    Article  CAS  PubMed  Google Scholar 

  • Klitsch T, Siemen D (1991) Inner mitochondrial membrane anion channel is present in brown adipocytes but is not identical with the uncoupling protein. J Membr Biol 122:69–75

    Article  CAS  PubMed  Google Scholar 

  • Kokoszka JE, Waymire KG, Levy SE, Sligh JE, Cai J, Jones DP, MacGregor GR, Wallace DC (2004) The ADP/ATP translocator is not essential for the mitochondrial permeability transition pore. Nature 427:461–465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kusano H, Shimizu S, Koya RC, Fujita H, Kamada S, Kuzumaki N, Tsujimoto Y (2000) Human gelsolin prevents apoptosis by inhibiting apoptotic mitochondrial changes via closing VDAC. Oncogene 19:4807–4814

    Article  CAS  PubMed  Google Scholar 

  • Landry DW, Akabas MH, Redhead C, Edelman A, Cragoe EJ Jr, Al-Awqati Q (1989) Purification and reconstitution of chloride channels from kidney and trachea. Science 244:1469–1472

    Article  CAS  PubMed  Google Scholar 

  • Laus MN, Soccio M, Trono D, Cattivelli L, Pastore D (2008) Plant inner membrane anion channel (PIMAC) function in plant mitochondria. Plant Cell Physiol 49:1039–1055

    Article  CAS  PubMed  Google Scholar 

  • Leanza L, Biasutto L, Manago A, Gulbins E, Zoratti M, Szabo I (2013) Intracellular ion channels and cancer. Front Physiol 4:227

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee AC, Xu X, Colombini M (1996) The role of pyridine dinucleotides in regulating the permeability of the mitochondrial outer membrane. J Biol Chem 271:26724–26731

    Article  CAS  PubMed  Google Scholar 

  • Littler DR, Harrop SJ, Brown LJ, Pankhurst GJ, Mynott AV, Luciani P, Mandyam RA, Mazzanti M, Tanda S, Berryman MA, Breit SN, Curmi PM (2008) Comparison of vertebrate and invertebrate CLIC proteins: the crystal structures of caenorhabditis elegans EXC-4 and drosophila melanogaster dmCLIC. Proteins 71:364–378

    Article  CAS  PubMed  Google Scholar 

  • Littler DR, Harrop SJ, Goodchild SC, Phang JM, Mynott AV, Jiang L, Valenzuela SM, Mazzanti M, Brown LJ, Breit SN, Curmi PM (2010) The enigma of the CLIC proteins: ion channels, redox proteins, enzymes, scaffolding proteins? FEBS Lett 584:2093–2101

    Article  CAS  PubMed  Google Scholar 

  • Lodish H, Berk A, Zipursky SL, Matsudaira P, Baltimore D, Darnell J (2000) Section 15.4 Intracellular ion environment and membrane electric potential. In: Molecular cell biology, 4th edn. Scientific American Books, New York

    Google Scholar 

  • Machida K, Ohta Y, Osada H (2006) Suppression of apoptosis by cyclophilin D via stabilization of hexokinase ii mitochondrial binding in cancer cells. J Biol Chem 281:14314–14320

    Article  CAS  PubMed  Google Scholar 

  • Malekova L, Tomaskova J, Novakova M, Stefanik P, Kopacek J, Lakatos B, Pastorekova S, Krizanova O, Breier A, Ondrias K (2007) Inhibitory effect of DIDS, NPPB, and phloretin on intracellular chloride channels. Pflugers Arch 455:349–357

    Article  CAS  PubMed  Google Scholar 

  • Malia TJ, Wagner G (2007) Nmr structural investigation of the mitochondrial outer membrane protein VDAC and its interaction with antiapoptotic bcl-xl. Biochemistry 46:514–525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mannella CA (1997) Minireview: on the structure and gating mechanism of the mitochondrial channel, VDAC. J Bioenerg Biomembr 29:525–531

    Article  CAS  PubMed  Google Scholar 

  • Menzel VA, Cassara MC, Benz R, de Pinto V, Messina A, Cunsolo V, Saletti R, Hinsch KD, Hinsch E (2009) Molecular and functional characterization of VDAC2 purified from mammal spermatozoa. Biosci Rep 29:351–362

    Article  CAS  PubMed  Google Scholar 

  • Mertins B, Psakis G, Essen LO (2014) Voltage-dependent anion channels: the wizard of the mitochondrial outer membrane. Biol Chem 395:1435–1442

    Article  CAS  PubMed  Google Scholar 

  • Misak A, Grman M, Malekova L, Novotova M, Markova J, Krizanova O, Ondrias K, Tomaskova Z (2013) Mitochondrial chloride channels: electrophysiological characterization and ph induction of channel pore dilation. Eur Biophys J 42:709–720

    Article  CAS  PubMed  Google Scholar 

  • Murphy MP (2009) How mitochondria produce reactive oxygen species. Biochem J 417:1–13

    Article  CAS  PubMed  Google Scholar 

  • Neumann D, Buckers J, Kastrup L, Hell SW, Jakobs S (2010) Two-color sted microscopy reveals different degrees of colocalization between hexokinase-i and the three human VDAC isoforms. PMC Biophys 3:4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nicholls DG, Lindberg O (1973) Brown-adipose-tissue mitochondria. The influence of albumin and nucleotides on passive ion permeabilities. Eur J Biochem 37:523–530

    Article  CAS  PubMed  Google Scholar 

  • O’Rourke B (2000) Pathophysiological and protective roles of mitochondrial ion channels. J Physiol 529(Pt 1):23–36

    Article  PubMed  PubMed Central  Google Scholar 

  • O’Rourke B (2007) Mitochondrial ion channels. Annu Rev Physiol 69:19–49

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • O’Rourke B, Cortassa S, Aon MA (2005) Mitochondrial ion channels: gatekeepers of life and death. Physiology (Bethesda) 20:303–315

    Article  Google Scholar 

  • Perkins G, Renken C, Martone ME, Young SJ, Ellisman M, Frey T (1997) Electron tomography of neuronal mitochondria: three-dimensional structure and organization of cristae and membrane contacts. J Struct Biol 119:260–272

    Article  CAS  PubMed  Google Scholar 

  • Petronilli V, Szabo I, Zoratti M (1989) The inner mitochondrial membrane contains ion-conducting channels similar to those found in bacteria. FEBS Lett 259:137–143

    Article  CAS  PubMed  Google Scholar 

  • Ponnalagu D, Gururaja Rao S, Farber J, Xin W, Hussain AT, Shah K, Tanda S, Berryman M, Edwards JC, Singh H (2016a) Molecular identity of cardiac mitochondrial chloride intracellular channel proteins. Mitochondrion 27:6–14

    Article  CAS  PubMed  Google Scholar 

  • Ponnalagu D, Rao SG, Farber J, Xin W, Hussain AT, Shah K, Tanda S, Berryman MA, Edwards JC, Singh H (2016b) Data supporting characterization of CLIC1, CLIC4, CLIC5 and dmCLIC antibodies and localization of CLICs in endoplasmic reticulum of cardiomyocytes. Data Brief 7:1038–1044

    Article  PubMed  PubMed Central  Google Scholar 

  • Powers MF, Beavis AD (1991) Triorganotins inhibit the mitochondrial inner membrane anion channel. J Biol Chem 266:17250–17256

    CAS  PubMed  Google Scholar 

  • Powers MF, Smith LL, Beavis AD (1994) On the relationship between the mitochondrial inner membrane anion channel and the adenine nucleotide translocase. J Biol Chem 269:10614–10620

    CAS  PubMed  Google Scholar 

  • Prindle A, Liu J, Asally M, Ly S, Garcia-Ojalvo J, Suel GM (2015) Ion channels enable electrical communication in bacterial communities. Nature 527:59–63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Proutski I, Karoulias N, Ashley RH (2002) Overexpressed chloride intracellular channel protein CLIC4 (p64H1) is an essential component of novel plasma membrane anion channels. Biochem Biophys Res Commun 297:317–322

    Article  CAS  PubMed  Google Scholar 

  • Rassow J (2011) Helicobacter pylori vacuolating toxin a and apoptosis. Cell Commun Signal 9:26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodríguez PFG, Wu Y, Singh H, Toro L, Stefani E (2012) Building a fast scanning stimulated emission depletion microscope: a step by step guide. In: Méndez-Vilas A (ed) Current microscopy contributions to advances in science and technology. Formatex Research Center, pp 791–800

    Google Scholar 

  • Roelfsema MR, Hedrich R, Geiger D (2012) Anion channels: master switches of stress responses. Trends Plant Sci 17:221–229

    Article  CAS  PubMed  Google Scholar 

  • Rostovtseva TK, Bezrukov SM (2008) VDAC regulation: role of cytosolic proteins and mitochondrial lipids. J Bioenerg Biomembr 40:163–170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sabirov RZ, Sheiko T, Liu H, Deng D, Okada Y, Craigen WJ (2006) Genetic demonstration that the plasma membrane maxianion channel and voltage-dependent anion channels are unrelated proteins. J Biol Chem 281:1897–1904

    Article  CAS  PubMed  Google Scholar 

  • Salvi M, Brunati AM, Toninello A (2005) Tyrosine phosphorylation in mitochondria: a new frontier in mitochondrial signaling. Free Radic Biol Med 38:1267–1277

    Article  CAS  PubMed  Google Scholar 

  • Schein SJ, Colombini M, Finkelstein A (1976) Reconstitution in planar lipid bilayers of a voltage-dependent anion-selective channel obtained from paramecium mitochondria. J Membr Biol 30:99–120

    Article  CAS  PubMed  Google Scholar 

  • Schinzel AC, Takeuchi O, Huang Z, Fisher JK, Zhou Z, Rubens J, Hetz C, Danial NN, Moskowitz MA, Korsmeyer SJ (2005) Cyclophilin D is a component of mitochondrial permeability transition and mediates neuronal cell death after focal cerebral ischemia. Proc Natl Acad Sci U S A 102:12005–12010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schulz GE (2002) The structure of bacterial outer membrane proteins. Biochim Biophys Acta 1565:308–317

    Article  CAS  PubMed  Google Scholar 

  • Sena LA, Chandel NS (2012) Physiological roles of mitochondrial reactive oxygen species. Mol Cell 48:158–167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shanmughapriya S, Rajan S, Hoffman NE, Higgins AM, Tomar D, Nemani N, Hines KJ, Smith DJ, Eguchi A, Vallem S, Shaikh F, Cheung M, Leonard NJ, Stolakis RS, Wolfers MP, Ibetti J, Chuprun JK, Jog NR, Houser SR, Koch WJ, Elrod JW, Madesh M (2015) Spg7 is an essential and conserved component of the mitochondrial permeability transition pore. Mol Cell 60:47–62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sheldon KL, Maldonado EN, Lemasters JJ, Rostovtseva TK, Bezrukov SM (2011) Phosphorylation of voltage-dependent anion channel by serine/threonine kinases governs its interaction with tubulin. PLoS One 6, e25539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sheppard DN, Welsh MJ (1992) Effect of ATP-sensitive K+ channel regulators on cystic fibrosis transmembrane conductance regulator chloride currents. J Gen Physiol 100:573–591

    Article  CAS  PubMed  Google Scholar 

  • Shimizu S, Narita M, Tsujimoto Y (1999) Bcl-2 family proteins regulate the release of apoptogenic cytochrome c by the mitochondrial channel VDAC. Nature 399:483–487

    Article  CAS  PubMed  Google Scholar 

  • Shimizu S, Ide T, Yanagida T, Tsujimoto Y (2000) Electrophysiological study of a novel large pore formed by bax and the voltage-dependent anion channel that is permeable to cytochrome c. J Biol Chem 275:12321–12325

    Article  CAS  PubMed  Google Scholar 

  • Shoshan-Barmatz V, Keinan N, Abu-Hamad S, Tyomkin D, Aram L (1797) Apoptosis is regulated by the VDAC1 n-terminal region and by VDAC oligomerization: release of cytochrome c, aif and smac/diablo. Biochim Biophys Acta 2010:1281–1291

    Google Scholar 

  • Shoshan-Barmatz V, Ben-Hail D, Admoni L, Krelin Y, Tripathi SS (1848) The mitochondrial voltage-dependent anion channel 1 in tumor cells. Biochim Biophys Acta 2015:2547–2575

    Google Scholar 

  • Shulga N, Wilson-Smith R, Pastorino JG (2010) Sirtuin-3 deacetylation of cyclophilin D induces dissociation of hexokinase ii from the mitochondria. J Cell Sci 123:894–902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh H (2010) Two decades with dimorphic chloride intracellular channels (CLICs). FEBS Lett 584:2112–2121

    Article  CAS  PubMed  Google Scholar 

  • Singh H, Ashley RH (2006) Redox regulation of CLIC1 by cysteine residues associated with the putative channel pore. Biophys J 90:1628–1638

    Article  CAS  PubMed  Google Scholar 

  • Singh H, Ashley RH (2007) CLIC4 (p64H1) and its putative transmembrane domain form poorly selective, redox-regulated ion channels. Mol Membr Biol 24:41–52

    Article  CAS  PubMed  Google Scholar 

  • Singh H, Cousin MA, Ashley RH (2007) Functional reconstitution of mammalian ‘chloride intracellular channels’ CLIC1, CLIC4 and CLIC5 reveals differential regulation by cytoskeletal actin. FEBS J 274:6306–6316

    Article  CAS  PubMed  Google Scholar 

  • Singh H, Warburton S, Vondriska TM, Khakh BS (2009) Proteomics to identify proteins interacting with p2x2 ligand-gated cation channels. J Vis Exp

    Google Scholar 

  • Singh H, Stefani E, Toro L (2012a) Intracellular bk(ca) (ibk(ca)) channels. J Physiol 590:5937–5947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh H, Lu R, Rodriguez PF, Wu Y, Bopassa JC, Stefani E, Toro L (2012b) Visualization and quantification of cardiac mitochondrial protein clusters with STED microscopy. Mitochondrion 12:230–236

    Article  CAS  PubMed  Google Scholar 

  • Sollner K (1955) A physicochemical cell model which simultaneously accumulates anions and cations against concentration gradients. Arch Biochem Biophys 54:129–134

    Article  CAS  PubMed  Google Scholar 

  • Sorgato MC, Keller BU, Stuhmer W (1987) Patch-clamping of the inner mitochondrial membrane reveals a voltage-dependent ion channel. Nature 330:498–500

    Article  CAS  PubMed  Google Scholar 

  • Sorgato MC, Moran O, De Pinto V, Keller BU, Stuehmer W (1989) Further investigation on the high-conductance ion channel of the inner membrane of mitochondria. J Bioenerg Biomembr 21:485–496

    Article  CAS  PubMed  Google Scholar 

  • Stockdale M, Dawson AP, Selwyn MJ (1970) Effects of trialkyltin and triphenyltin compounds on mitochondrial respiration. Eur J Biochem 15:342–351

    Article  CAS  PubMed  Google Scholar 

  • Stoychev SH, Nathaniel C, Fanucchi S, Brock M, Li S, Asmus K, Woods VL Jr, Dirr HW (2009) Structural dynamics of soluble chloride intracellular channel protein CLIC1 examined by amide hydrogen-deuterium exchange mass spectrometry. Biochemistry 48:8413–8421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suh KS, Mutoh M, Nagashima K, Fernandez-Salas E, Edwards LE, Hayes DD, Crutchley JM, Marin KG, Dumont RA, Levy JM, Cheng C, Garfield S, Yuspa SH (2004) The organellular chloride channel protein CLIC4/mtCLIC translocates to the nucleus in response to cellular stress and accelerates apoptosis. J Biol Chem 279:4632–4641

    Article  CAS  PubMed  Google Scholar 

  • Suh KS, Mutoh M, Mutoh T, Li L, Ryscavage A, Crutchley JM, Dumont RA, Cheng C, Yuspa SH (2007) Clic4 mediates and is required for ca2 + −induced keratinocyte differentiation. J Cell Sci 120:2631–2640

    Article  CAS  PubMed  Google Scholar 

  • Sun Y, Olson R, Horning M, Armstrong N, Mayer M, Gouaux E (2002) Mechanism of glutamate receptor desensitization. Nature 417:245–253

    Article  CAS  PubMed  Google Scholar 

  • Szabo I, Zoratti M (1993) The mitochondrial permeability transition pore may comprise VDAC molecules. I. Binary structure and voltage dependence of the pore. FEBS Lett 330:201–205

    Article  CAS  PubMed  Google Scholar 

  • Szabo I, Zoratti M (2014) Mitochondrial channels: ion fluxes and more. Physiol Rev 94:519–608

    Article  CAS  PubMed  Google Scholar 

  • Szabo I, De Pinto V, Zoratti M (1993) The mitochondrial permeability transition pore may comprise VDAC molecules. Ii. The electrophysiological properties of VDAC are compatible with those of the mitochondrial megachannel. FEBS Lett 330:206–210

    Article  CAS  PubMed  Google Scholar 

  • Szabo I, Brutsche S, Tombola F, Moschioni M, Satin B, Telford JL, Rappuoli R, Montecucco C, Papini E, Zoratti M (1999) Formation of anion-selective channels in the cell plasma membrane by the toxin VacA of helicobacter pylori is required for its biological activity. EMBO J 18:5517–5527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takano K, Liu D, Tarpey P, Gallant E, Lam A, Witham S, Alexov E, Chaubey A, Stevenson RE, Schwartz CE, Board PG, Dulhunty AF (2012) An x-linked channelopathy with cardiomegaly due to a CLIC2 mutation enhancing ryanodine receptor channel activity. Hum Mol Genet 21:4497–4507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tan W, Colombini M (1768) VDAC closure increases calcium ion flux. Biochim Biophys Acta 2007:2510–2515

    Google Scholar 

  • Tombola F, Del Giudice G, Papini E, Zoratti M (2000) Blockers of VacA provide insights into the structure of the pore. Biophys J 79:863–873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tonini R, Ferroni A, Valenzuela SM, Warton K, Campbell TJ, Breit SN, Mazzanti M (2000) Functional characterization of the NCC27 nuclear protein in stable transfected CHO-K1 cells. FASEB J 14:1171–1178

    CAS  PubMed  Google Scholar 

  • Toro L, Li M, Zhang Z, Singh H, Wu Y, Stefani E (2014) Maxik channel and cell signalling. Pflugers Arch 466:875–886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tulk BM, Kapadia S, Edwards JC (2002) CLIC1 inserts from the aqueous phase into phospholipid membranes, where it functions as an anion channel. Am J Physiol Cell Physiol 282:C1103–C1112

    Article  CAS  PubMed  Google Scholar 

  • Tung JJ, Hobert O, Berryman M, Kitajewski J (2009) Chloride intracellular channel 4 is involved in endothelial proliferation and morphogenesis in vitro. Angiogenesis 12:209–220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ujwal R, Cascio D, Colletier JP, Faham S, Zhang J, Toro L, Ping P, Abramson J (2008) The crystal structure of mouse VDAC1 at 2.3 a resolution reveals mechanistic insights into metabolite gating. Proc Natl Acad Sci U S A 105:17742–17747

    Google Scholar 

  • Ulmasov B, Bruno J, Woost PG, Edwards JC (2007) Tissue and subcellular distribution of CLIC1. BMC Cell Biol 8:8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Valenzuela SM, Martin DK, Por SB, Robbins JM, Warton K, Bootcov MR, Schofield PR, Campbell TJ, Breit SN (1997) Molecular cloning and expression of a chloride ion channel of cell nuclei. J Biol Chem 272:12575–12582

    Article  CAS  PubMed  Google Scholar 

  • Valenzuela SM, Mazzanti M, Tonini R, Qiu MR, Warton K, Musgrove EA, Campbell TJ, Breit SN (2000) The nuclear chloride ion channel NCC27 is involved in regulation of the cell cycle. J Physiol 529(Pt 3):541–552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verkman AS, Galietta LJ (2009) Chloride channels as drug targets. Nat Rev Drug Discov 8:153–171

    Article  CAS  PubMed  Google Scholar 

  • Verma M, Shulga N, Pastorino JG (2013) Sirtuin-3 modulates Bak- and Bax-dependent apoptosis. J Cell Sci 126:274–288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Cao Y, Shen M, Wang B, Zhang W, Liu Y, He X, Wang L, Xia Y, Ding M, Xu X, Ren J (2015) Dids reduces ischemia/reperfusion-induced myocardial injury in rats. Cell Physiol Biochem 35:676–688

    Article  PubMed  CAS  Google Scholar 

  • Warton K, Tonini R, Fairlie WD, Matthews JM, Valenzuela SM, Qiu MR, Wu WM, Pankhurst S, Bauskin AR, Harrop SJ, Campbell TJ, Curmi PM, Breit SN, Mazzanti M (2002) Recombinant CLIC1 (NCC27) assembles in lipid bilayers via a ph-dependent two-state process to form chloride ion channels with identical characteristics to those observed in chinese hamster ovary cells expressing CLIC1. J Biol Chem 277:26003–26011

    Article  CAS  PubMed  Google Scholar 

  • Weber-Schurholz S, Wischmeyer E, Laurien M, Jockusch H, Schurholz T, Landry DW, al-Awqati Q (1993) Indanyloxyacetic acid-sensitive chloride channels from outer membranes of skeletal muscle. J Biol Chem 268:547–551

    Google Scholar 

  • Willhite DC, Blanke SR (2004) Helicobacter pylori vacuolating cytotoxin enters cells, localizes to the mitochondria, and induces mitochondrial membrane permeability changes correlated to toxin channel activity. Cell Microbiol 6:143–154

    Article  CAS  PubMed  Google Scholar 

  • Wojciak-Stothard B, Abdul-Salam VB, Lao KH, Tsang H, Irwin DC, Lisk C, Loomis Z, Stenmark KR, Edwards JC, Yuspa SH, Howard LS, Edwards RJ, Rhodes CJ, Gibbs JS, Wharton J, Zhao L, Wilkins MR (2014) Aberrant chloride intracellular channel 4 expression contributes to endothelial dysfunction in pulmonary arterial hypertension. Circulation 129:1770–1780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wolf A, Agnihotri S, Micallef J, Mukherjee J, Sabha N, Cairns R, Hawkins C, Guha A (2011) Hexokinase 2 is a key mediator of aerobic glycolysis and promotes tumor growth in human glioblastoma multiforme. J Exp Med 208:313–326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu X, Decker W, Sampson MJ, Craigen WJ, Colombini M (1999) Mouse VDAC isoforms expressed in yeast: channel properties and their roles in mitochondrial outer membrane permeability. J Membr Biol 170:89–102

    Article  CAS  PubMed  Google Scholar 

  • Xu Y, Kang J, Yuan Z, Li H, Su J, Li Y, Kong X, Zhang H, Wang W, Sun L (2013) Suppression of CLIC4/mtCLIC enhances hydrogen peroxide-induced apoptosis in c6 glioma cells. Oncol Rep 29:1483–1491

    Article  CAS  PubMed  Google Scholar 

  • Yamagata H, Shimizu S, Nishida Y, Watanabe Y, Craigen WJ, Tsujimoto Y (2009) Requirement of voltage-dependent anion channel 2 for pro-apoptotic activity of bax. Oncogene 28:3563–3572

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi H, Jelokhani-Niaraki M, Kodama H (2004) Second transmembrane domain of human uncoupling protein 2 is essential for its anion channel formation. FEBS Lett 577:299–304

    Article  CAS  PubMed  Google Scholar 

  • Zernig G, Graziadei I, Moshammer T, Zech C, Reider N, Glossmann H (1990) Mitochondrial ca2+ antagonist binding sites are associated with an inner mitochondrial membrane anion channel. Mol Pharmacol 38:362–369

    CAS  PubMed  Google Scholar 

  • Zheng XB, Wang R, Yang HL, Sun XL (2013) Effects of chloride ion channel and its blockers on myocardial ischemia reperfusion arrhythmias in rabbits. Zhonghua Yi Xue Za Zhi 93:1168–1173

    CAS  PubMed  Google Scholar 

  • Zizi M, Forte M, Blachly-Dyson E, Colombini M (1994) Nadh regulates the gating of VDAC, the mitochondrial outer membrane channel. J Biol Chem 269:1614–1616

    CAS  PubMed  Google Scholar 

  • Zoratti M, Szabo I (1995) The mitochondrial permeability transition. Biochim Biophys Acta 1241:139–176

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. Olimpia Meucci (DUCoM) for providing reagents, Jason Farber, Ahmed T. Hussain, and Kajol Shah for assistance with data analysis, and Dr. Shubha Gururaja Rao (DUCoM) for helpful comments and discussions. HS is supported by CTRI, CURE, AHA SDG (11SDG7230059), NIH NHLBI (1R01HL133050-01) and startup funds from DUCoM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harpreet Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ponnalagu, D., Singh, H. (2016). Anion Channels of Mitochondria. In: Singh, H., Sheu, SS. (eds) Pharmacology of Mitochondria. Handbook of Experimental Pharmacology, vol 240. Springer, Cham. https://doi.org/10.1007/164_2016_39

Download citation

Publish with us

Policies and ethics