Abstract
SHACAL-1 is an 80-round block cipher with a 160-bit block size and a key of up to 512 bits. In this paper, we mount rectangle attacks on the first 51 rounds and a series of inner 52 rounds of SHACAL-1, and also mount differential attacks on the first 49 rounds and a series of inner 55 rounds of SHACAL-1. These are the best currently known cryptanalytic results on SHACAL-1 in an one key attack scenario.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Biham, E.: New types of cryptanalytic attacks using related keys. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 398–409. Springer, Heidelberg (1994)
Biham, E., Shamir, A.: Differential cryptanalysis of the Data Encryption Standard. Springer, Heidelberg (1993)
Biham, E., Dunkelman, O., Keller, N.: The rectangle attack — rectangling the Serpent. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 340–357. Springer, Heidelberg (2001)
Biham, E., Dunkelman, O., Keller, N.: New results on boomerang and rectangle attacks. In: Daemen, J., Rijmen, V. (eds.) FSE 2002. LNCS, vol. 2365, pp. 1–16. Springer, Heidelberg (2002)
Biham, E., Dunkelman, O., Keller, N.: Rectangle attacks on 49-round SHACAL-1. In: Johansson, T. (ed.) FSE 2003. LNCS, vol. 2887, pp. 22–35. Springer, Heidelberg (2003)
Dunkelman, O.: Techniques for cryptanalysis of block ciphers, Ph.D dissertation of Technion (2006), Available at: http://www.cs.technion.ac.il/users/wwwb/cgi-bin/tr-info.cgi?2006/PHD/PHD-2006-02
Dunkelman, O., Keller, N., Kim, J.-S.: Related-Key Rectangle Attack on the Full SHACAL-1. In: Biham, E., Youssef, A.M. (eds.) SAC 2006. LNCS, vol. 4356, pp. 28–44. Springer, Heidelberg (2007)
Handschuh, H., Knudsen, L.R., Robshaw, M.J.: Analysis of SHA-1 in encryption mode. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp. 70–83. Springer, Heidelberg (2001)
Handschuh, H., Naccache, D.: SHACAL. In: Proceedings of The First Open NESSIE Workshop (2000), Available at: https://www.cosic.esat.kuleuven.be/nessie/work-shop/submissions.html
Handschuh, H., Naccache, D.: SHACAL, NESSIE (2001), Available at: https://www.cosic.esat.kuleuven.be/nessie/tweaks.html
Hong, S., Kim, J., Lee, S., Preneel, B.: Related-key rectangle attacks on reduced versions of SHACAL-1 and AES-192. In: Gilbert, H., Handschuh, H. (eds.) FSE 2005. LNCS, vol. 3557, pp. 368–383. Springer, Heidelberg (2005)
Kelsey, J., Kohno, T., Schneier, B.: Amplified boomerang attacks against reduced-round MARS and Serpent. In: Schneier, B. (ed.) FSE 2000. LNCS, vol. 1978, pp. 75–93. Springer, Heidelberg (2001)
Kelsey, J., Schneier, B., Wagner, D.: Key-schedule cryptanalysis of IDEA, G-DES, GOST, SAFER, and Triple-DES. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 237–251. Springer, Heidelberg (1996)
Kim, J., Kim, G., Hong, S., Lee, S., Hong, D.: The related-key rectangle attack — application to SHACAL-1. In: Wang, H., Pieprzyk, J., Varadharajan, V. (eds.) ACISP 2004. LNCS, vol. 3108, pp. 123–136. Springer, Heidelberg (2004)
Kim, J., Moon, D., Lee, W., Hong, S., Lee, S., Jung, S.: Amplified boomerang attack against reduced-round SHACAL. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 243–253. Springer, Heidelberg (2002)
Lipmaa, H., Moriai, S.: Efficient algorithms for computing differential properties of addition. In: Matsui, M. (ed.) FSE 2001. LNCS, vol. 2355, pp. 336–350. Springer, Heidelberg (2002)
Matsui, M.: Linear cryptanalysis method for DES cipher. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994)
Nakahara Jr., J.: The statistical evaluation of the NESSIE submission (2001)
U.S. Department of Commerce, Secure Hash Standard FIPS 180-1, N.I.S.T. (1995)
Wagner, D.: The boomerang attack. In: Knudsen, L.R. (ed.) FSE 1999. LNCS, vol. 1636, pp. 156–170. Springer, Heidelberg (1999)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Lu, J., Kim, J., Keller, N., Dunkelman, O. (2006). Differential and Rectangle Attacks on Reduced-Round SHACAL-1. In: Barua, R., Lange, T. (eds) Progress in Cryptology - INDOCRYPT 2006. INDOCRYPT 2006. Lecture Notes in Computer Science, vol 4329. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11941378_3
Download citation
DOI: https://doi.org/10.1007/11941378_3
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-49767-7
Online ISBN: 978-3-540-49769-1
eBook Packages: Computer ScienceComputer Science (R0)