[go: up one dir, main page]

Skip to main content

Parameterized Problems on Coincidence Graphs

  • Conference paper
Algorithms and Computation (ISAAC 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4288))

Included in the following conference series:

  • 1169 Accesses

Abstract

A (k,r)-tuple is a word of length r on an alphabet of size k. A graph is (k,r)-representable if we can assign a (k,r)-tuple to each vertex such that two vertices are connected iff the associated tuples agree on some component. We study the complexity of several graph problems on (k,r)-representable graphs, as a function of the parameters k,r; the problems under study are Maximum Independent Set, Minimum Dominating Set and Maximum Clique. In this framework, there are two classes of interest: the graphs representable with tuples of logarithmic length (i.e. graphs (k,r)-representable with r = O(k logn)), and the graphs representable with tuples of polynomial length (i.e. graphs (k,r)-representable with r = poly(n)). In both cases, we show that the problems are computationally hard, though we obtain stronger hardness results in the second case. Our hardness results also allow us to derive optimality results for Multidimensional Matching and Disjoint r -Subsets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alber, J., Bodlaender, H., Fernau, H., Niedermeier, R.: Fixed parameter algorithms for planar dominating set and related problems. In: Halldórsson, M.M. (ed.) SWAT 2000. LNCS, vol. 1851, pp. 97–110. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  2. Alon, N., Yuster, R., Zwick, U.: Color-coding. Journal of the Association for Computing Machinery 42(4), 844–856 (1995)

    MATH  MathSciNet  Google Scholar 

  3. Buss, J.F., Goldsmith, J.: Nondeterminism within P. SIAM Journal on Computing 22, 560–572 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  4. Cai, L., Juedes, D.: On the existence of subexponential parameterized algorithms. Journal of Computer and System Sciences 67(4), 789–807 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  5. Chen, J., Chor, B., Fellows, M., Huang, X., Juedes, D., Kanj, I.A., Xia, G.: Tight lower bounds for certain parameterized NP-hard problems. Information and Computation 201(2), 216–231 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  6. Dehne, F., Fellows, M., Rosamond, F.: An FPT algorithm for Set Splitting. In: Bodlaender, H.L. (ed.) WG 2003. LNCS, vol. 2880, pp. 180–191. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  7. Dehne, F.K.H.A., Fellows, M.R., Langston, M.A., Rosamond, F.A., Stevens, K.: An O(2O(k) n 3) FPT Algorithm for the Undirected Feedback Vertex Set Problem. In: Wang, L. (ed.) COCOON 2005. LNCS, vol. 3595, pp. 859–869. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  8. Downey, R., Estivill, V., Fellows, M., Prieto, E., Rosamond, F.: Cutting up is hard to do: the parameterized complexity of k-cut and related problems. In: Proceedings of CATS 2003. ENTCS, vol. 78 (2003)

    Google Scholar 

  9. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Heidelberg (1999)

    Google Scholar 

  10. Fellows, M., Knauer, C., Nishimura, N., Ragde, P., Rosamonds, F., Stege, U., Thilikos, D., Whitesides, S.: Faster fixed-parameter tractable algorithms for matching and packing problems. In: Albers, S., Radzik, T. (eds.) ESA 2004. LNCS, vol. 3221, pp. 311–322. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  11. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman, New-York (1979)

    MATH  Google Scholar 

  12. Mehlhorn, K.: Data Structures and Algorithms. Springer, Heidelberg (1990)

    Google Scholar 

  13. Pietrzak, K.: On the parameterized complexity of the fixed alphabet shortest common supersequence and longest common subsequence problems. Journal of Computer and System Sciences 67(4), 757–771 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  14. Welsh, D.J.A., Powell, M.B.: An upper bound for the chromatic number of a graph and its application to timetabling problems. The Computer Journal 10, 85–86 (1967)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Guillemot, S. (2006). Parameterized Problems on Coincidence Graphs. In: Asano, T. (eds) Algorithms and Computation. ISAAC 2006. Lecture Notes in Computer Science, vol 4288. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11940128_27

Download citation

  • DOI: https://doi.org/10.1007/11940128_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-49694-6

  • Online ISBN: 978-3-540-49696-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics