[go: up one dir, main page]

Skip to main content

High-Speed RSA Crypto-processor with Radix-4 Modular Multiplication and Chinese Remainder Theorem

  • Conference paper
Information Security and Cryptology – ICISC 2006 (ICISC 2006)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 4296))

Included in the following conference series:

Abstract

Today, RSA is one of the most popular public-key crypto-system in various applications. In this paper, we present a high-speed RSA crypto-processor with modified radix-4 Montgomery multiplication algorithm and Chinese Remainder Theorem (CRT). Our design takes 0.84M clock cycles for a 1024-bit modular exponentiation and 0.25M clock cycles for two 512-bit exponentiations. Using 0.18 um standard cell library, the processor achieves 365Kbps for a 1024-bit exponentiation and 1,233Kbps for two 512-bit exponentiations at a 300MHz clock rate. For the high performance RSA crypto-system, the processor can also execute modular reduction, which is essential for calculating the Montgomery mapping constant and the modularly reduced ciphertext in CRT technique.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signature and public-key cryptosystems. Comm. ACM 21, 120–126 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  2. Blakley, G.R.: A computer algorithm for the product ab modulo m. IEEE Trans. Comput. C-32, 497–500 (1983)

    Article  MATH  Google Scholar 

  3. Brickell, E.F.: A fast modular multiplication algorithm with application to two-key cryptography. In: Proc. CRYPTO 1982 Advances Cryptology, pp. 51–60 (1982)

    Google Scholar 

  4. Montgomery, P.L.: Modular multiplication without trial division. Math. Computation 44, 519–521 (1985)

    Article  MATH  Google Scholar 

  5. Koc, C.K., Acar, T., Kaliski Jr., B.S.: Analyzing and Comparing Montgomery Multiplication Algorithms. IEEE Micro. 16(3), 26–33 (1996)

    Article  Google Scholar 

  6. Blum, T., Paar, C.: Montgomery modular exponentiation on reconfigurable hardware. In: Proc. 14th IEEE Symp. on Comp. Arith., pp. 70–77 (1999)

    Google Scholar 

  7. Takagi, N.: A radix-4 modular multiplication hardware algorithm for modular exponentiation. IEEE Trans. Comput. 41, 949–956 (1992)

    Article  Google Scholar 

  8. Kornerup, P.: High-radix modular multiplication for cryptosystems. In: Proc. 11th IEEE Symp. Comput. Arith., Windsor, ON, Canada, June 1993, pp. 277–283 (1993)

    Google Scholar 

  9. Hong, J.-H., Wu, C.-W.: Cellular-Array Modular Multiplier for Fast RSA Public-Key Cryptosystem Based on Modified Booth’s Algorithm. IEEE Trans. on VLSI Systems 11(3), 474–484 (2003)

    Article  Google Scholar 

  10. Couvreur, C., Quisquater, J.J.: Fast decipherment algorithm for RSA public-key cryptosystem. Electronics letters 18(21), 905–907 (1982)

    Article  Google Scholar 

  11. McIvor, C., McLoone, M., McCanny, J.V.: A high-speed, low latency RSA decryption silicon core. In: IEEE Inter. Symp. On Circuits and Systems (ISCAS), May 2003, vol. 4, pp. 25–28 (2003)

    Google Scholar 

  12. Wu, C.-H., Hong, J.-H., Wu, C.-W.: RSA cryptosystem design based on Chinese remainder theorem. In: IEEE Proc. Asia and South Pacific Design Automation Conf. (ASP-DA), pp. 391–395 (2001)

    Google Scholar 

  13. Kwon, T.W., You, C.S., Heo, W.S., Kang, Y.K., Choi, J.R.: Two Implementation Methods of a 1024-bit RSA Cryptoprocessor Based on Modified Montgomery Algorithm. In: IEEE Inter. Symp. On Circuits and Systems (ISCAS), vol. 4, pp. 650–653 (2001)

    Google Scholar 

  14. McIvor, C., McLoone, M., McCanny, J.V.: Fast Montgomery Modular Multiplication and RSA Cryptographic Processor Architectures. In: 37th Asilomar Conference on Signals, Systems and Computers, November 2003, vol. 1(7), pp. 379–384 (2003)

    Google Scholar 

  15. Cilardo, A., Mazzeo, A., Romano, L., Saggese, G.P.: Carry-Save Montgomery Modular Exponentiation on Reconfigurable Hardware. IEEE Proc. on DATE 2004 03(3), 206–211 (2004)

    Google Scholar 

  16. Blum, T., Paar, C.: High-radix Montgomery modular exponentiation on reconfigurable hardware. IEEE Trans. Comput. 50(7), 70–77 (2001)

    Article  Google Scholar 

  17. Kornerup, P.: Systolic, Linear-Array Multiplier for a Class of Right-Shift Algorithms. IEEE Trans. on Comp. 43(8), 892–898 (1994)

    Article  MATH  Google Scholar 

  18. Walter, C.D.: Systolic modular multiplication. IEEE Trans. on Comp. 42(3), 376–378 (1993)

    Article  Google Scholar 

  19. Eldridge, S.E., Walter, C.D.: Hardware implementation of Montgomery’s modular multiplication algorithm. IEEE Trans. on Comp. 42(6), 693–699 (1993)

    Article  Google Scholar 

  20. Booth, A.D.: A signed binary multiplication technique. Q. J. Mech. Appl. Math. 4(2), 236–240 (1951)

    Article  MATH  MathSciNet  Google Scholar 

  21. Koc, C.K., Hung, C.Y.: Fast algorithm for modular reduction. IEE Proc. -Comput. Digit. Tech. 145(4), 265–271 (1998)

    Article  Google Scholar 

  22. Cho, K.-S., Ryu, J.-H., Cho, J.-D.: High-speed modular multiplication algorithm for RSA cryptosystem. In: IECON 2001, pp. 479–483 (2001)

    Google Scholar 

  23. McIvor, C., McLoone, M., McCanny, J.V.: Modified Montgomery modular multiplication and RSA exponentiation techniques. IEE Proc. -Comput. Digit. Tech. 151(6), 402–408 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Koo, B., Lee, D., Ryu, G., Chang, T., Lee, S. (2006). High-Speed RSA Crypto-processor with Radix-4 Modular Multiplication and Chinese Remainder Theorem. In: Rhee, M.S., Lee, B. (eds) Information Security and Cryptology – ICISC 2006. ICISC 2006. Lecture Notes in Computer Science, vol 4296. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11927587_9

Download citation

  • DOI: https://doi.org/10.1007/11927587_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-49112-5

  • Online ISBN: 978-3-540-49114-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics