Abstract
Pairwise coupling is a popular multi-class classification approach that prepares binary classifiers separating each pair of classes, and then combines the binary classifiers together. This paper proposes a pairwise coupling combination strategy using individual logistic regressions (ILR-PWC). We show analytically and experimentally that the ILR-PWC approach is more accurate than the individual logistic regressions.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Freund, Y., Schapire, R.: A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences 55, 119–139 (1997)
Cortes, C., Vapnik, V.: Support vector networks. Machine Learning 20, 273–297 (1995)
Vapnik, V.: The nature of statistical learning theory. Springer, Heidelberg (1995)
Rumelhart, D., Hinton, G., Williams, R.: Learning internal representations by error propagation. In: Rumelhart, D., McClelland, J., et al. (eds.) Parallel Distributed Processing. Foundations, vol. 1, pp. 318–362. MIT Press, Cambridge (1987)
Begg, C., Gray, R.: Calculation of polychotomous logistic regression parameters using individualized regressions. Biometrika 71, 11–18 (1984)
Friedman, J.: Another approach to polychotomous classification. Technical Report, Statistics Department, Stanford University (1996)
Hastie, T., Tibshirani, R.: Classification by pairwise coupling. The Annals of Statistics 26, 451–471 (1998)
Agresti, A.: Categorical Data Analysis. John Wiley & Sons, Chichester (1990)
Hosmer, D., Lemeshow, S.: Applied logistic regression, 2nd edn. Wiley-Interscience, Chichester (2000)
Friedman, J., Hastie, T., Tibshirani, R.: Additive logistic regression: A statistical view of boosting. Annals of statistics 28, 337–374 (2000)
Blake, C., Merz, C.: UCI repository of machine learning databases (1998)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Yamaguchi, N. (2006). Combining Pairwise Coupling Classifiers Using Individual Logistic Regressions. In: King, I., Wang, J., Chan, LW., Wang, D. (eds) Neural Information Processing. ICONIP 2006. Lecture Notes in Computer Science, vol 4233. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11893257_2
Download citation
DOI: https://doi.org/10.1007/11893257_2
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-46481-5
Online ISBN: 978-3-540-46482-2
eBook Packages: Computer ScienceComputer Science (R0)