[go: up one dir, main page]

Skip to main content

Combining Pairwise Coupling Classifiers Using Individual Logistic Regressions

  • Conference paper
Neural Information Processing (ICONIP 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4233))

Included in the following conference series:

  • 1389 Accesses

Abstract

Pairwise coupling is a popular multi-class classification approach that prepares binary classifiers separating each pair of classes, and then combines the binary classifiers together. This paper proposes a pairwise coupling combination strategy using individual logistic regressions (ILR-PWC). We show analytically and experimentally that the ILR-PWC approach is more accurate than the individual logistic regressions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Freund, Y., Schapire, R.: A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences 55, 119–139 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  2. Cortes, C., Vapnik, V.: Support vector networks. Machine Learning 20, 273–297 (1995)

    MATH  Google Scholar 

  3. Vapnik, V.: The nature of statistical learning theory. Springer, Heidelberg (1995)

    MATH  Google Scholar 

  4. Rumelhart, D., Hinton, G., Williams, R.: Learning internal representations by error propagation. In: Rumelhart, D., McClelland, J., et al. (eds.) Parallel Distributed Processing. Foundations, vol. 1, pp. 318–362. MIT Press, Cambridge (1987)

    Google Scholar 

  5. Begg, C., Gray, R.: Calculation of polychotomous logistic regression parameters using individualized regressions. Biometrika 71, 11–18 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  6. Friedman, J.: Another approach to polychotomous classification. Technical Report, Statistics Department, Stanford University (1996)

    Google Scholar 

  7. Hastie, T., Tibshirani, R.: Classification by pairwise coupling. The Annals of Statistics 26, 451–471 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  8. Agresti, A.: Categorical Data Analysis. John Wiley & Sons, Chichester (1990)

    MATH  Google Scholar 

  9. Hosmer, D., Lemeshow, S.: Applied logistic regression, 2nd edn. Wiley-Interscience, Chichester (2000)

    Book  MATH  Google Scholar 

  10. Friedman, J., Hastie, T., Tibshirani, R.: Additive logistic regression: A statistical view of boosting. Annals of statistics 28, 337–374 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  11. Blake, C., Merz, C.: UCI repository of machine learning databases (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yamaguchi, N. (2006). Combining Pairwise Coupling Classifiers Using Individual Logistic Regressions. In: King, I., Wang, J., Chan, LW., Wang, D. (eds) Neural Information Processing. ICONIP 2006. Lecture Notes in Computer Science, vol 4233. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11893257_2

Download citation

  • DOI: https://doi.org/10.1007/11893257_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-46481-5

  • Online ISBN: 978-3-540-46482-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics