Abstract
Pairwise coupling is a popular multi-class classification approach that prepares binary classifiers separating each pair of classes, and then combines the binary classifiers together. This paper proposes a pairwise coupling combination strategy using individual logistic regressions (ILR-PWC). We show analytically and experimentally that the ILR-PWC approach is more accurate than the individual logistic regressions.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Freund, Y., Schapire, R.: A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences 55, 119–139 (1997)
Cortes, C., Vapnik, V.: Support vector networks. Machine Learning 20, 273–297 (1995)
Vapnik, V.: The nature of statistical learning theory. Springer, Heidelberg (1995)
Rumelhart, D., Hinton, G., Williams, R.: Learning internal representations by error propagation. In: Rumelhart, D., McClelland, J., et al. (eds.) Parallel Distributed Processing. Foundations, vol. 1, pp. 318–362. MIT Press, Cambridge (1987)
Begg, C., Gray, R.: Calculation of polychotomous logistic regression parameters using individualized regressions. Biometrika 71, 11–18 (1984)
Friedman, J.: Another approach to polychotomous classification. Technical Report, Statistics Department, Stanford University (1996)
Hastie, T., Tibshirani, R.: Classification by pairwise coupling. The Annals of Statistics 26, 451–471 (1998)
Agresti, A.: Categorical Data Analysis. John Wiley & Sons, Chichester (1990)
Hosmer, D., Lemeshow, S.: Applied logistic regression, 2nd edn. Wiley-Interscience, Chichester (2000)
Friedman, J., Hastie, T., Tibshirani, R.: Additive logistic regression: A statistical view of boosting. Annals of statistics 28, 337–374 (2000)
Blake, C., Merz, C.: UCI repository of machine learning databases (1998)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Yamaguchi, N. (2006). Combining Pairwise Coupling Classifiers Using Individual Logistic Regressions. In: King, I., Wang, J., Chan, LW., Wang, D. (eds) Neural Information Processing. ICONIP 2006. Lecture Notes in Computer Science, vol 4233. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11893257_2
Download citation
DOI: https://doi.org/10.1007/11893257_2
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-46481-5
Online ISBN: 978-3-540-46482-2
eBook Packages: Computer ScienceComputer Science (R0)