[go: up one dir, main page]

Skip to main content

Modeling of LTP-Related Phenomena Using an Artificial Firing Cell

  • Conference paper
Neural Information Processing (ICONIP 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4232))

Included in the following conference series:

Abstract

We present a computational model of neuron, called firing cell (FC), that is a compromise between biological plausibility and computational efficiency aimed to simulate spiketrain processing in a living neuronal tissue. FC covers such phenomena as attenuation of receptors for external stimuli, delay and decay of postsynaptic potentials, modification of internal weights due to propagation of postsynaptic potentials through the dendrite, modification of properties of the analog memory for each input due to a pattern of long-time synaptic potentiation (LTP), output-spike generation when the sum of all inputs exceeds a threshold, and refraction. We showed that, depending on the phase of input signals, FC’s output frequency demonstrate various types of behavior from regular to chaotic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bialowas, J., Grzyb, B., Poszumski, P.: Firing Cell: An Artificial neuron with a simulation of Long-Term-Potentiation-Related Memory. In: The Eleventh International Symposium of Artificial Life and Robotics, Beppu, pp. 731–734 (2006)

    Google Scholar 

  2. Atwood, H.L., MacKay, W.A.: Essentials of Neurophysiology. B.C. Decker Inc., Toronto (1989)

    Google Scholar 

  3. Schmidt, R.F. (ed.): Fundamentals of Neurophysiology, pp. 64–92. Springer, Heidelberg (1976)

    Google Scholar 

  4. Muller, D., Joly, M., Lynch, G.: Contributions of quisqualate and NMDA receptors to the induction and expression of LTP. Science 242, 1694–1697 (1988)

    Article  Google Scholar 

  5. Bliss, T.V.P., Collingridge, G.L.: Asynaptic model of memory: long-term potentiation in the hippocampus. Nature 361, 31–39 (1993)

    Article  Google Scholar 

  6. Bekkers, J.M., Stevens, C.F.: Two different ways evolution makes neurons larger. In: Storm-Mathisen, J., Zimmer, J., Ottersen, O.P. (eds.) Progress in Brain Research, vol. 83, pp. 37–45. Elsevier, Amsterdam (1990)

    Google Scholar 

  7. Izhikevich, E.M.: Simple model of spiking neurons. IEEE Transactions on Neural Networks 14, 1569–1572 (2003)

    Article  Google Scholar 

  8. Hines, M.: A program for simulation of nerve eqations with branching geometries. International Journal of Biomedical Comput. 24, 55–68 (1989)

    Article  Google Scholar 

  9. Sikora, M.A., Gottesman, J., Miller, R.F.: A computational model of the ribbon synapse. Journal of Neuroscience Methods 145, 47–61 (2005)

    Article  Google Scholar 

  10. Traub, R.D., Contreras, D., Cunningham, M.O., et al.: Single-Column Thalamocortical Network Model Exhibiting Gamma Oscillations, Sleep Spindles, and Epileptogenic Bursts. Journal of Neurophysiology 93, 2194–2232 (2005)

    Article  Google Scholar 

  11. Bower, J.M., Beeman, D.: The Book of GENESIS: Exploring Realistic Neural Models with the GEneral NEural SImulation System (2003), http://www.genesissim.org/GENESIS/iBoG/iBoGpdf/index.html

  12. Bliss, T.V.P., Lomo, T.J.: Long lasting potentiation of synaptic transmission in the dentate area of the anaestaetized rabbit following stimulation of the perforant path. J. Physiol. (London) 232, 331–356 (1973)

    Google Scholar 

  13. Rolls, E.T., Treves, A.: Neural Networks and Brain Function. Oxford University Press, Oxford (1998)

    Google Scholar 

  14. Amaral, D.G., Ishizuka, N.: Neurons, numbers and the hippocampal network. In: Storm-Mathisen, J., Zimmer, J., Ottersen, O.P. (eds.) Progress in Brain Research, vol. 83, pp. 1–12. Elsevier, Amsterdam (1990)

    Google Scholar 

  15. Mahovald, M., Douglas, R.: A silicon neuron. Nature 354, 515–518 (1991)

    Article  Google Scholar 

  16. Elias, J.G., Northmore, D.P.M.: Building Silicon Nervous Systems with Dendritic Tree Neuromorphs. In: Maass, W., Bishop, C.M. (eds.) Pulsed Neural Networks, pp. 135–156. The MIT Press, Cambridge (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Grzyb, B., Bialowas, J. (2006). Modeling of LTP-Related Phenomena Using an Artificial Firing Cell. In: King, I., Wang, J., Chan, LW., Wang, D. (eds) Neural Information Processing. ICONIP 2006. Lecture Notes in Computer Science, vol 4232. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11893028_11

Download citation

  • DOI: https://doi.org/10.1007/11893028_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-46479-2

  • Online ISBN: 978-3-540-46480-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics