Abstract
We consider the problem of estimating the local accuracy of image registration when no ground truth data is available. The technique is based on a statistical resampling technique called bootstrap. Only the two input images are used, no other data are needed. The general bootstrap uncertainty estimation framework described here is in principle applicable to most of the existing pixel based registration techniques. In practice, a large computing power is required. We present experimental results for a block matching method on an ultrasound image sequence for elastography with both known and unknown deformation field.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Brown, L.: A survey of image registration techniques. ACM Computing Surveys 24(4), 326–376 (1992)
Lester, H., Arridge, S.R.: A survey of hierarchical non-linear medical image registration. Pattern Recognition 32(1), 129–149 (1999)
Maintz, J., Viergever, M.A.: A survey of medical image registration. Medical Image Analysis 2(1), 1–36 (1998)
Pluim, J., Maintz, J.B.A., Viergever, M.A.: Mutual-information-based registration of medical images: A survey. IEEE Transactions on Medical Imaging 22(8), 986–1004 (2003)
van den Elsen, P.A., Pol, E.J.D., Viergever, M.A.: Medical image matching—A review with classification. IEEE Engineering in Medicine and Biology, 26–39 (1993)
Zitová, B., Flusser, J.: Image registration methods: a survey. Image and Vision Computing (21), 977–1000 (2003)
Efron, B., Tibshirani, R.: An Introduction to the Bootstrap. Monographs on Statistics and Applied Probability, vol. 57. Chapman & Hall, CRC (1993)
Zoubir, A.M., Boashash, B.: The bootstrap and its applications in signal processing. IEEE Signal Processing Magazine, 56–76 (1998)
Duda, R.O., Hart, P.E., Stork, D.G.: Pattern classification, 2nd edn. Wiley Interscience Publication. John Wiley, New York (2001)
Ophir, J., Kallel, F., Varghese, T., Konofagou, E., Alam, S.K., Garra, B., Krouskop, T., Righetti, R.: Elastography: Optical and acoustic imaging of acoustic media. C. R. Acad. Sci. Paris 2(8), 1193–1212 (2001); serie IV
Ophir, J., Alam, S., Garra, B., Kallel, F., Konofagou, E., Krouskop, T., Varghese, T.: Elastography: ultrasonic estimation and imaging of the elastic properties of tissues. Proc. Instn. Mech. Engrs. 213, 203–233 (1999)
Washington, C.W., Miga, M.I.: Modality independent elastography (MIE): A new approach to elasticity imaging. IEEE Transactions on Medical Imaging, 1117–1126 (2004)
Kybic, J., Smutek, D.: Estimating elastic properties of tissues from standard 2d ultrasound images. In: Walker, W.F., Emelianov, S.Y. (eds.) Medical Imaging 2005: Ultrasonic Imaging and Signal Processing, Bellingham, Washington, USA. Progress in Biomedical Optics and Imaging, vol. 6, pp. 184–195. SPIE (2005)
Kybic, J., Smutek, D.: Computational elastography from standard ultrasound image sequences by global trust region optimization. In: Christensen, G.E., Sonka, M. (eds.) IPMI 2005. LNCS, vol. 3565, pp. 299–310. Springer, Heidelberg (2005)
Fang, J., Huang, T.S.: Some experiments on estimating the 3-D motion parameters of a rigid body from two consecutive image frames. IEEE Trans. Pattern Anal. Mach. Intell 3(65) (1984)
Snyder, M.A.: The precision of 3-D parameters in correspondence based techniques: the case of uniform translational motion in rigid environment. IEEE Trans. Pattern Anal. Mach. Intell. 5(11), 523–528 (1998)
Haralick, R.M., Joo, H., Lee, C.N., Zhuang, X., Vaidya, V.G., Kim, M.B.: Pose estimation from corresponding point data. IEEE Trans. Systems, Man and Cybernetics 6(19), 1426–1446 (1989)
Davis, C.Q., Freeman, D.M.: Statistics of subpixel registration algorithms based on spatiotemporal gradients or block matching. Optical Engineering 4(37), 1290–1298 (1998)
Maurer, C.J., Fitzpatrick, J., Wang, M., Galloway, R.J., Maciunas, R., Allen, G.: Registration of head volume images using implantable fiducial markers. IEEE Transactions on Medical Imaging 16(4) (1997)
West, J., Fitzpatrick, J.M., Wang, M.Y., Dawant, B.M., Maurer, C.R.J., Kessler, R.M., Maciunas, R.J., Barillot, C., Lemoine, D., Collignon, A., Maes, F., Suetens, P., Vandermeulen, D., van den Elsen, P.A., Napel, S., Sumanaweera, T.S., Harkness, B., Hemler, P.F., Hill, D.L.G., Hawkes, D.J., Studholme, C., Maintz, J.B.A., Viergever, M.A., Malandain, G., Pennec, X., Noz, M.E., Maguire, G.Q.J., Pollack, M., Pelizzari, C.A., Robb, R.A., Hanson, D., Woods, R.P.: Comparison and evaluation of retrospective intermodality brain image registration techniques. Journal of Computer Assisted Tomography 21(4), 554–568 (1997)
Jannin, P., Fitzpatrick, J., Hawkes, D., Pennec, X., Shahidi, R., Vannier, M.: Validation of medical image processing in image-guided therapy. IEEE Trans. on Medical Imaging 21(12), 1445–1449 (2002)
Nicolau, S., Pennec, X., Soler, L., Ayache, N.: Evaluation of a new 3D/2D registration criterion for liver radio-frequencies guided by augmented reality. In: Intl. Symp. on Surgery Sim. and Soft Tissue Model, pp. 270–283 (2003)
Kanatani, K.: Geometric computation for machine vision. Oxford University Press, Inc., New York (1993)
Kanatani, K.: Analysis of 3-d rotation fitting. IEEE Trans. Pattern Anal. Mach. Intell 16(5), 543–549 (1994)
Anandan, P.: A computational framework and an algorithm for the measurement of visual motion. International Journal of Computer Vision 2(3), 283–310 (1989)
Heeger, D.J.: Optical flow using spatiotemporal filters. International Journal of Computer Vision 1(4), 279–302 (1988)
Simoncelli, E.P., Adelson, E.H., Heeger, D.J.: Probability distributions of optical flow. In: Proc. Conf. on Computer Vision and Pattern Recognition, Mauii, Hawaii, pp. 310–315. IEEE Computer Society, Los Alamitos (1991)
Pennec, X., Thirion, J.P.: A framework for uncertainty and validation of 3d registration methods based on points and frames. International Journal of Computer Vision 25(3), 203–229 (1997)
Kybic, J., Unser, M.: Fast parametric elastic image registration. IEEE Transactions on Image Processing 12(11), 1427–1442 (2003)
Thévenaz, P., Ruttimann, U.E., Unser, M.: A pyramid approach to subpixel registration based on intensity. IEEE Transactions on Image Processing 7(1), 1–15 (1998)
Thévenaz, P., Unser, M.: Optimization of mutual information for multiresolution image registration. IEEE Transactions on Image Processing 9(12), 2083–2099 (2000)
Szeliski, R., Coughlan, J.: Spline-based image registration. International Journal of Computer Vision 22, 199–218 (1997)
Maes, F., Collignong, A., Vandermeulen, D., Marchal, G., Suetens, P.: Multimodality image registration by maximization of mutual information. IEEE Transactions on Medical Imaging 16(2), 187–198 (1997)
Rösch, P., Weese, J., Netsch, T., Quist, M., Penney, G., Hill, D.: Robust 3D deformation field estimation by template propagation. In: Delp, S.L., DiGoia, A.M., Jaramaz, B. (eds.) MICCAI 2000. LNCS, vol. 1935, pp. 521–530. Springer, Heidelberg (2000)
Rueckert, D., Clarkson, M.J., Hill, D.L.G., Hawkes, D.J.: Non-rigid registration using higher-order mutual information. In: Proceedings of SPIE Medical Imaging 2000: Image Processing, pp. 438–447 (2000)
Pluim, J.P.W., Maintz, J.B.A., Viergever, M.A.: Image registration by maximization of combined mutual information and gradient information. IEEE Transactions Med. Imag. 19(8) (2000)
Horn, B., Schunck, B.: Determining optical flow. Artificial Inteligence 17, 185–203 (1981)
Bro-Nielsen, M., Gramkow, C.: Fast fluid registration of medical images. In: Höhne, K.H., Kikinis, R. (eds.) Visualization in Biomedical Computing, pp. 267–276. Springer, Heidelberg (1996)
Morsy, A., Ramm, O.: 3D ultrasound tissue motion tracking using correlation search. IEEE Trans. Ultr. Ferro. & Freq. Cont. 20, 151–159 (1998)
Ourselin, S., Roche, A., Prima, S., Ayache, N.: Block matching: A general framework to improve robustness of rigid registration of medical images. In: Delp, S.L., DiGoia, A.M., Jaramaz, B. (eds.) MICCAI 2000. LNCS, vol. 1935, pp. 557–566. Springer, Heidelberg (2000)
Unser, M., Aldroubi, A., Eden, M.: B-Spline signal processing: Part I–Theory. IEEE Transactions on Signal Processing 41(2), 821–833 (1993) (best paper award)
Unser, M., Aldroubi, A., Eden, M.: B-Spline signal processing: Part II–Efficient design and applications. IEEE Transactions on Signal Processing 41(2), 834–848 (1993)
Unser, M.: Splines: A perfect fit for signal and image processing. IEEE Signal Processing Magazine 16(6), 22–38 (1999)
Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes in C, 2nd edn. Cambridge University Press, Cambridge (1992)
Liu, D.C., Nocedal, J.: On the limited memory BFGS method for large scale minimization. Mathematical Programming (45), 503–528 (1989)
Brusseau, E., Fromageau, J., Rognin, N., Delacharte, P., Vray, D.: Local estimation of RF ultrasound signal compression for axial strain imaging: theoretical developments and experimental design. IEEE Engineering in Medicine and Biology Magazine 21(4), 86–94 (2002)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Kybic, J., Smutek, D. (2006). Image Registration Accuracy Estimation Without Ground Truth Using Bootstrap. In: Beichel, R.R., Sonka, M. (eds) Computer Vision Approaches to Medical Image Analysis. CVAMIA 2006. Lecture Notes in Computer Science, vol 4241. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11889762_6
Download citation
DOI: https://doi.org/10.1007/11889762_6
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-46257-6
Online ISBN: 978-3-540-46258-3
eBook Packages: Computer ScienceComputer Science (R0)