[go: up one dir, main page]

Skip to main content

Image Registration Accuracy Estimation Without Ground Truth Using Bootstrap

  • Conference paper
Computer Vision Approaches to Medical Image Analysis (CVAMIA 2006)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4241))

Abstract

We consider the problem of estimating the local accuracy of image registration when no ground truth data is available. The technique is based on a statistical resampling technique called bootstrap. Only the two input images are used, no other data are needed. The general bootstrap uncertainty estimation framework described here is in principle applicable to most of the existing pixel based registration techniques. In practice, a large computing power is required. We present experimental results for a block matching method on an ultrasound image sequence for elastography with both known and unknown deformation field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Brown, L.: A survey of image registration techniques. ACM Computing Surveys 24(4), 326–376 (1992)

    Article  Google Scholar 

  2. Lester, H., Arridge, S.R.: A survey of hierarchical non-linear medical image registration. Pattern Recognition 32(1), 129–149 (1999)

    Article  Google Scholar 

  3. Maintz, J., Viergever, M.A.: A survey of medical image registration. Medical Image Analysis 2(1), 1–36 (1998)

    Article  Google Scholar 

  4. Pluim, J., Maintz, J.B.A., Viergever, M.A.: Mutual-information-based registration of medical images: A survey. IEEE Transactions on Medical Imaging 22(8), 986–1004 (2003)

    Article  Google Scholar 

  5. van den Elsen, P.A., Pol, E.J.D., Viergever, M.A.: Medical image matching—A review with classification. IEEE Engineering in Medicine and Biology, 26–39 (1993)

    Google Scholar 

  6. Zitová, B., Flusser, J.: Image registration methods: a survey. Image and Vision Computing (21), 977–1000 (2003)

    Article  Google Scholar 

  7. Efron, B., Tibshirani, R.: An Introduction to the Bootstrap. Monographs on Statistics and Applied Probability, vol. 57. Chapman & Hall, CRC (1993)

    Google Scholar 

  8. Zoubir, A.M., Boashash, B.: The bootstrap and its applications in signal processing. IEEE Signal Processing Magazine, 56–76 (1998)

    Google Scholar 

  9. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern classification, 2nd edn. Wiley Interscience Publication. John Wiley, New York (2001)

    MATH  Google Scholar 

  10. Ophir, J., Kallel, F., Varghese, T., Konofagou, E., Alam, S.K., Garra, B., Krouskop, T., Righetti, R.: Elastography: Optical and acoustic imaging of acoustic media. C. R. Acad. Sci. Paris 2(8), 1193–1212 (2001); serie IV

    Google Scholar 

  11. Ophir, J., Alam, S., Garra, B., Kallel, F., Konofagou, E., Krouskop, T., Varghese, T.: Elastography: ultrasonic estimation and imaging of the elastic properties of tissues. Proc. Instn. Mech. Engrs. 213, 203–233 (1999)

    Google Scholar 

  12. Washington, C.W., Miga, M.I.: Modality independent elastography (MIE): A new approach to elasticity imaging. IEEE Transactions on Medical Imaging, 1117–1126 (2004)

    Google Scholar 

  13. Kybic, J., Smutek, D.: Estimating elastic properties of tissues from standard 2d ultrasound images. In: Walker, W.F., Emelianov, S.Y. (eds.) Medical Imaging 2005: Ultrasonic Imaging and Signal Processing, Bellingham, Washington, USA. Progress in Biomedical Optics and Imaging, vol. 6, pp. 184–195. SPIE (2005)

    Google Scholar 

  14. Kybic, J., Smutek, D.: Computational elastography from standard ultrasound image sequences by global trust region optimization. In: Christensen, G.E., Sonka, M. (eds.) IPMI 2005. LNCS, vol. 3565, pp. 299–310. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  15. Fang, J., Huang, T.S.: Some experiments on estimating the 3-D motion parameters of a rigid body from two consecutive image frames. IEEE Trans. Pattern Anal. Mach. Intell 3(65) (1984)

    Google Scholar 

  16. Snyder, M.A.: The precision of 3-D parameters in correspondence based techniques: the case of uniform translational motion in rigid environment. IEEE Trans. Pattern Anal. Mach. Intell. 5(11), 523–528 (1998)

    Google Scholar 

  17. Haralick, R.M., Joo, H., Lee, C.N., Zhuang, X., Vaidya, V.G., Kim, M.B.: Pose estimation from corresponding point data. IEEE Trans. Systems, Man and Cybernetics 6(19), 1426–1446 (1989)

    Article  Google Scholar 

  18. Davis, C.Q., Freeman, D.M.: Statistics of subpixel registration algorithms based on spatiotemporal gradients or block matching. Optical Engineering 4(37), 1290–1298 (1998)

    Article  Google Scholar 

  19. Maurer, C.J., Fitzpatrick, J., Wang, M., Galloway, R.J., Maciunas, R., Allen, G.: Registration of head volume images using implantable fiducial markers. IEEE Transactions on Medical Imaging 16(4) (1997)

    Google Scholar 

  20. West, J., Fitzpatrick, J.M., Wang, M.Y., Dawant, B.M., Maurer, C.R.J., Kessler, R.M., Maciunas, R.J., Barillot, C., Lemoine, D., Collignon, A., Maes, F., Suetens, P., Vandermeulen, D., van den Elsen, P.A., Napel, S., Sumanaweera, T.S., Harkness, B., Hemler, P.F., Hill, D.L.G., Hawkes, D.J., Studholme, C., Maintz, J.B.A., Viergever, M.A., Malandain, G., Pennec, X., Noz, M.E., Maguire, G.Q.J., Pollack, M., Pelizzari, C.A., Robb, R.A., Hanson, D., Woods, R.P.: Comparison and evaluation of retrospective intermodality brain image registration techniques. Journal of Computer Assisted Tomography 21(4), 554–568 (1997)

    Article  Google Scholar 

  21. Jannin, P., Fitzpatrick, J., Hawkes, D., Pennec, X., Shahidi, R., Vannier, M.: Validation of medical image processing in image-guided therapy. IEEE Trans. on Medical Imaging 21(12), 1445–1449 (2002)

    Article  Google Scholar 

  22. Nicolau, S., Pennec, X., Soler, L., Ayache, N.: Evaluation of a new 3D/2D registration criterion for liver radio-frequencies guided by augmented reality. In: Intl. Symp. on Surgery Sim. and Soft Tissue Model, pp. 270–283 (2003)

    Google Scholar 

  23. Kanatani, K.: Geometric computation for machine vision. Oxford University Press, Inc., New York (1993)

    MATH  Google Scholar 

  24. Kanatani, K.: Analysis of 3-d rotation fitting. IEEE Trans. Pattern Anal. Mach. Intell 16(5), 543–549 (1994)

    Article  Google Scholar 

  25. Anandan, P.: A computational framework and an algorithm for the measurement of visual motion. International Journal of Computer Vision 2(3), 283–310 (1989)

    Article  Google Scholar 

  26. Heeger, D.J.: Optical flow using spatiotemporal filters. International Journal of Computer Vision 1(4), 279–302 (1988)

    Article  Google Scholar 

  27. Simoncelli, E.P., Adelson, E.H., Heeger, D.J.: Probability distributions of optical flow. In: Proc. Conf. on Computer Vision and Pattern Recognition, Mauii, Hawaii, pp. 310–315. IEEE Computer Society, Los Alamitos (1991)

    Chapter  Google Scholar 

  28. Pennec, X., Thirion, J.P.: A framework for uncertainty and validation of 3d registration methods based on points and frames. International Journal of Computer Vision 25(3), 203–229 (1997)

    Article  Google Scholar 

  29. Kybic, J., Unser, M.: Fast parametric elastic image registration. IEEE Transactions on Image Processing 12(11), 1427–1442 (2003)

    Article  Google Scholar 

  30. Thévenaz, P., Ruttimann, U.E., Unser, M.: A pyramid approach to subpixel registration based on intensity. IEEE Transactions on Image Processing 7(1), 1–15 (1998)

    Article  MathSciNet  Google Scholar 

  31. Thévenaz, P., Unser, M.: Optimization of mutual information for multiresolution image registration. IEEE Transactions on Image Processing 9(12), 2083–2099 (2000)

    Article  MATH  Google Scholar 

  32. Szeliski, R., Coughlan, J.: Spline-based image registration. International Journal of Computer Vision 22, 199–218 (1997)

    Article  Google Scholar 

  33. Maes, F., Collignong, A., Vandermeulen, D., Marchal, G., Suetens, P.: Multimodality image registration by maximization of mutual information. IEEE Transactions on Medical Imaging 16(2), 187–198 (1997)

    Article  Google Scholar 

  34. Rösch, P., Weese, J., Netsch, T., Quist, M., Penney, G., Hill, D.: Robust 3D deformation field estimation by template propagation. In: Delp, S.L., DiGoia, A.M., Jaramaz, B. (eds.) MICCAI 2000. LNCS, vol. 1935, pp. 521–530. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  35. Rueckert, D., Clarkson, M.J., Hill, D.L.G., Hawkes, D.J.: Non-rigid registration using higher-order mutual information. In: Proceedings of SPIE Medical Imaging 2000: Image Processing, pp. 438–447 (2000)

    Google Scholar 

  36. Pluim, J.P.W., Maintz, J.B.A., Viergever, M.A.: Image registration by maximization of combined mutual information and gradient information. IEEE Transactions Med. Imag. 19(8) (2000)

    Google Scholar 

  37. Horn, B., Schunck, B.: Determining optical flow. Artificial Inteligence 17, 185–203 (1981)

    Article  Google Scholar 

  38. Bro-Nielsen, M., Gramkow, C.: Fast fluid registration of medical images. In: Höhne, K.H., Kikinis, R. (eds.) Visualization in Biomedical Computing, pp. 267–276. Springer, Heidelberg (1996)

    Google Scholar 

  39. Morsy, A., Ramm, O.: 3D ultrasound tissue motion tracking using correlation search. IEEE Trans. Ultr. Ferro. & Freq. Cont. 20, 151–159 (1998)

    Google Scholar 

  40. Ourselin, S., Roche, A., Prima, S., Ayache, N.: Block matching: A general framework to improve robustness of rigid registration of medical images. In: Delp, S.L., DiGoia, A.M., Jaramaz, B. (eds.) MICCAI 2000. LNCS, vol. 1935, pp. 557–566. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  41. Unser, M., Aldroubi, A., Eden, M.: B-Spline signal processing: Part I–Theory. IEEE Transactions on Signal Processing 41(2), 821–833 (1993) (best paper award)

    Article  MATH  Google Scholar 

  42. Unser, M., Aldroubi, A., Eden, M.: B-Spline signal processing: Part II–Efficient design and applications. IEEE Transactions on Signal Processing 41(2), 834–848 (1993)

    Article  MATH  Google Scholar 

  43. Unser, M.: Splines: A perfect fit for signal and image processing. IEEE Signal Processing Magazine 16(6), 22–38 (1999)

    Article  Google Scholar 

  44. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes in C, 2nd edn. Cambridge University Press, Cambridge (1992)

    MATH  Google Scholar 

  45. Liu, D.C., Nocedal, J.: On the limited memory BFGS method for large scale minimization. Mathematical Programming (45), 503–528 (1989)

    Article  MathSciNet  Google Scholar 

  46. Brusseau, E., Fromageau, J., Rognin, N., Delacharte, P., Vray, D.: Local estimation of RF ultrasound signal compression for axial strain imaging: theoretical developments and experimental design. IEEE Engineering in Medicine and Biology Magazine 21(4), 86–94 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kybic, J., Smutek, D. (2006). Image Registration Accuracy Estimation Without Ground Truth Using Bootstrap. In: Beichel, R.R., Sonka, M. (eds) Computer Vision Approaches to Medical Image Analysis. CVAMIA 2006. Lecture Notes in Computer Science, vol 4241. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11889762_6

Download citation

  • DOI: https://doi.org/10.1007/11889762_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-46257-6

  • Online ISBN: 978-3-540-46258-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics