Abstract
This paper considers the problem of automatic classification of textured tissues in 3D MRI. More specifically, it aims at validating the use of features extracted from the phase of the MR signal to improve texture discrimination in bone segmentation. This extra information provides better segmentation, compared to using magnitude only features. We also present a novel multiscale scheme to improve the speed of pixel based classification algorithm, such as support vector machines. This algorithm dramatically increases the speed of the segmentation process by an order of magnitude through a reduction of the number of pixels that needs to be classified in the image.
Chapter PDF
Similar content being viewed by others
References
van Ginneken, B., Frangi, A., Staal, J., Romeny, B., Viergever, M.: Active shape model segmentation with optimal features. IEEE Trans Med Imaging 21(8), 924–933 (2002)
Zhan, Y., Shen, D.: Automated segmentation of 3D US prostate images using statistical texture-based matching method. In: Ellis, R.E., Peters, T.M. (eds.) MICCAI 2003. LNCS, vol. 2878, pp. 688–696. Springer, Heidelberg (2003)
Xie, J., Jiang, Y., Tsui, H.t.: Segmentation of kidney from ultrasound images based on texture and shape priors. IEEE Trans Med Imaging 24(1), 45–57 (2005)
Lorigo, L., Faugeras, O., Grimson, W., Keriven, R., Kikinis, R.: Segmentation of bone in clinical knee MRI using texture-based geodesic active contours. In: Wells, W.M., Colchester, A.C.F., Delp, S.L. (eds.) MICCAI 1998. LNCS, vol. 1496, pp. 1195–1204. Springer, Heidelberg (1998)
Haacke, E., Xu, Y., Cheng, Y.C., Reichenbach, J.: Susceptibility weighted imaging (SWI). Magn Reson Med 52(3), 612–618 (2004)
Haacke, E., Xu, Y.: The role of voxel aspect ratio in determining apparent vascular phase behavior in susceptibility weighted imaging. Magn Reson Med 24(2), 155–160 (2006)
Sehgal, V., Delproposto, Z., Haacke, E., Tong, K., Wycliffe, N., Kido, D., Xu, Y., Neelavalli, J., Haddar, D., Reichenbach, J.: Clinical applications of neuroimaging with susceptibility-weighted imaging. J Magn Reson Imaging 22(4), 439–450 (2005)
Reyes-Aldasoro, C.C., Bhalerao, A.: Volumetric texture description and discriminant feature selection for MRI. In: Taylor, C.J., Noble, J.A. (eds.) IPMI 2003. LNCS, vol. 2732, pp. 282–293. Springer, Heidelberg (2003)
Bourgeat, P., Fripp, J., Janke, A., Galloway, G., Crozier, S., Ourselin, S.: The use of unwrapped phase in MR image segmentation: a preliminary study. In: Duncan, J.S., Gerig, G. (eds.) MICCAI 2005. LNCS, vol. 3750, pp. 813–820. Springer, Heidelberg (2005)
Vapnik, V.: The nature of statistical learning theory. Springer, New York (1995)
Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines (2001), software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm
Zhan, Y., Shen, D.: An adaptive error penalization method for training an efficient and generalized SVM. Pattern Recognition 39(3), 342–350 (2006)
Liang, K.H., Tjahjadi, T.: Adaptive scale fixing for multiscale texture segmentation. IEEE Trans Image Process 15(1), 249–256 (2006)
Choi, H., Baraniuk, R.G.: Multiscale image segmentation using wavelet-domain hidden Markov models. IEEE Trans Image Process 10(9), 1309–1321 (2001)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bourgeat, P., Fripp, J., Stanwell, P., Ramadan, S., Ourselin, S. (2006). MR Image Segmentation Using Phase Information and a Novel Multiscale Scheme. In: Larsen, R., Nielsen, M., Sporring, J. (eds) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2006. MICCAI 2006. Lecture Notes in Computer Science, vol 4191. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11866763_113
Download citation
DOI: https://doi.org/10.1007/11866763_113
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-44727-6
Online ISBN: 978-3-540-44728-3
eBook Packages: Computer ScienceComputer Science (R0)