[go: up one dir, main page]

Skip to main content

Application of Association Rules for Finding Correlations Among Students Preliminary Knowledge

  • Conference paper
Cooperative Design, Visualization, and Engineering (CDVE 2006)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 4101))

  • 775 Accesses

Abstract

This paper aims at finding an efficient way for discovering which specific knowledge each student does not possess in order to successfully start a new course or to proceed with another section in a current subject. Most existing tutoring systems respond to students’ mistakes by providing links to a collection of teaching materials. Such an approach does the individual needs of each student. Our idea is to apply a holistic approach that involves looking at the whole system of each student knowledge within an subject rather than just concentrating on single mistakes, lack of knowledge or misconception.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Agrawal, R., Imielinski, T., Swami, A.: Mining association rules between sets of items in large databases. In: Proceedings of ACM SIGMOD international conference on management of data, Washington, DC, USA, pp. 207–216 (1993)

    Google Scholar 

  2. Agrawal, R., Srikant, R.: Fast algorithm for mining association rules. In: Proceedings of the 20th very large data base conference, Santiago, Chile, pp. 487–489 (1994)

    Google Scholar 

  3. Agrawal, R., Mannila, H., Srikant, R., Toivonen, H., Verkamo, A.I.: Fast discovery of association rules. In: Uthurusamy, F., Piatetsky-Shapiro, G., Smyth, P. (eds.) Advances in Knowledge discovery of association rules, pp. 307–328. MIT Press, Cambridge (1996)

    Google Scholar 

  4. Bastide, T., Taouil, R., Pasquier, N., Stumme, G., Lakhal, L.: Mining frequent patterns with counting inference. SIGKDD explorations, Special issue on scalable algorithms 2(2), 71–80 (2000)

    Google Scholar 

  5. Brin, S., Motwani, R., Ullmann, J.D., Tsur, S.: Dynamic itemset counting and implication rules for market basket data. In: Proceedings of the ACM SIGKDD international conference on management of data, Tuscon, AZ, USA, pp. 255–264 (1997)

    Google Scholar 

  6. Carpineto, C., Romano, G.: Concept Data Analysis: Theory and Applications. John Wiley and Sons, Ltd., Chichester (2004)

    Book  MATH  Google Scholar 

  7. Delgado, M., Sanchez, D., Martin-Bautista, M.J., Vila, M.A.: Mining association rules with improved semantics in medical databases. Artificial Intelligence in Medicine 21(1-3), 241–250 (2001)

    Article  Google Scholar 

  8. Ganter, B., Stumme, G., Wille, R. (eds.): Formal Concept Analysis. LNCS (LNAI), vol. 3626. Springer, Heidelberg (2005)

    Google Scholar 

  9. Liu, C., Zheng, L., Ji, J., Yang, C., Li, J., Yang, W.: Electronic homework on the WWW. In: First Asia- Pacific Conference on Web Intelligence, pp. 540–547 (2001)

    Google Scholar 

  10. Malerba, D., Lisi, F.A., Appice, A., Sblendorio, F.: Mining spatial association rules in census data: a relational approach. In: Proceedings of the ECML/PKDD 2002 workshop on mining official data. University Printing House, Helsinki, pp. 80–93 (2002)

    Google Scholar 

  11. Martin, J., Vanlehn, K.: Student assessment using Bayesian nets. International Journal of Human- Computer Studies 42, 575–591 (1995)

    Article  Google Scholar 

  12. Merceron, A., Yacef, K.: A Web-based Tutoring Tool with Mining Facilities to Improve Learning and Teaching. In: Verdejo, F., Hoppe, U. (eds.) Proceedings of 11th International Conference on Artificial Intelligence in Education, Sydney. IOS Press, Amsterdam (2003)

    Google Scholar 

  13. Mueller, A.: Fast sequential and parallel algorithms for association rule mining: A comparison. Technical Report Technical Report CS-TR- 3515, University of Maryland, College Park, MD (1995)

    Google Scholar 

  14. Sweiger, M., Madsen, M.R., Langston, J., Howard Lombard, H.: Clickstream data warehousing. John Wiley & Sons, Chichester (2002)

    Google Scholar 

  15. Wille, R.: Concept lattices and conceptual knowledge systems. Computers Math. Applic. 23(6-9), 493–515 (1992)

    Article  MATH  Google Scholar 

  16. Zaki, M.J.: Generating non-redundant association rules. In: Proceedings of the 6th ACM SIGKDD international conference on knowledge discovery and data mining, Boston, USA, pp. 34–43 (2000)

    Google Scholar 

  17. Zaki, M.J., Hsiao, C.-J.: CHARM: An efficient algorithm for closed itemset mining. In: Proceedings of the 2nd SIAM international conference on data mining, Arlington, VA, USA, pp. 34–43 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Encheva, S., Tumin, S. (2006). Application of Association Rules for Finding Correlations Among Students Preliminary Knowledge. In: Luo, Y. (eds) Cooperative Design, Visualization, and Engineering. CDVE 2006. Lecture Notes in Computer Science, vol 4101. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11863649_37

Download citation

  • DOI: https://doi.org/10.1007/11863649_37

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-44494-7

  • Online ISBN: 978-3-540-44496-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics