Abstract
We evolve spiking neural networks that implement a seek-push-release drive for a simple simulated agent interacting with objects. The evolved agents display minimally-cognitive behavior, by switching as a function of context between the three sub-behaviors and by being able to discriminate relative object size. The neural controllers have either static synapses or synapses featuring spike-timing-dependent plasticity (STDP). Both types of networks are able to solve the task with similar efficacy, but networks with plastic synapses evolved faster. In the evolved networks, plasticity plays a minor role during the interaction with the environment and is used mostly to tune synapses when networks start to function.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Florian, R.V.: Autonomous artificial intelligent agents. Technical Report Coneural-03-01, Center for Cognitive and Neural Studies, Cluj, Romania (2003)
Maas, W., Bishop, C.M. (eds.): Pulsed neural networks. MIT Press, Cambridge (1999)
Gerstner, W., Kistler, W.M.: Spiking neuron models. Cambridge University Press, Cambridge (2002)
Florian, R.V.: Biologically inspired neural networks for the control of embodied agents. Technical Report Coneural-03-03, Center for Cognitive and Neural Studies, Cluj, Romania (2003)
DasGupta, B., Schnitger, G.: Analog versus discrete neural networks. Neural Computation 8, 805–818 (1996)
Maass, W., Schnitger, G., Sontag, E.D.: A comparison of the computational power of sigmoid and boolean threshold circuits. In: Roychowdhury, V.P., Siu, K., Orlitsky, A. (eds.) Theoretical Advances in Neural Computation and Learning, pp. 127–151. Kluwer Academic Publishers, Dordrecht (1994)
Maas, W.: Networks of spiking neurons: the third generation of neural network models. Neural Networks 10, 1659–1671 (1997)
Floreano, D., Mattiussi, C.: Evolution of spiking neural controllers for autonomous vision-based robots. In: Gomi, T. (ed.) Evolutionary Robotics IV. Springer, Heidelberg (2001)
Di Paolo, E.A.: Spike timing dependent plasticity for evolved robots. Adaptive Behavior 10, 243–263 (2002)
Saggie, K., Keinan, A., Ruppin, E.: Solving a Delayed Response Task with Spiking and McCulloch-Pitts Agents. In: Banzhaf, W., Ziegler, J., Christaller, T., Dittrich, P., Kim, J.T. (eds.) ECAL 2003. LNCS, vol. 2801, pp. 199–208. Springer, Heidelberg (2003)
Saggie-Wexler, K., Keinan, A., Ruppin, E.: Neural processing of counting in evolved spiking and mcculloch-pitts agents. Artificial Life 12(1), 1–16 (2005)
Ruppin, E.: Evolutionary embodied agents: A neuroscience perspective. Nature Reviews Neuroscience 3, 132–142 (2002)
Floreano, D., Schoeni, N., Caprari, G., Blynel, J.: Evolutionary bits’n’spikes. In: Standish, R.K., Bedau, M.A., Abbass, H.A. (eds.) Artificial Life VIII: Proceedings of the Eight International Conference on Artificial Life. MIT Press, Boston (2002)
Floreano, D., Zufferey, J.C., Mattiussi, C.: Evolving spiking neurons from wheels to wings. In: Proceedings of the 3rd International Symposium on Human and Artificial Intelligence Systems, Fukui, Japan (2002)
French, R.L.B., Damper, R.I.: Evolving a nervous system of spiking neurons for a behaving robot. In: Proceedings of Genetic and Evolutionary Computation Conference (GECCO 2001), San Francisco, CA, pp. 1099–1106 (2001)
French, R.L.B., Damper, R.I.: Evolution of a circuit of spiking neurons for phototaxis in a Braitenberg vehicle. In: Hallam, B., Floreano, D., Hallam, J., Hayes, G., Meyer, J.A. (eds.) From animals to animats 7: Proceedings of the Seventh International Conference on Simulation of Adaptive Behavior, pp. 335–344. MIT Press, Cambridge (2002)
Damper, R.I., French, R.L.B.: Evolving Spiking Neuron Controllers for Phototaxis and Phonotaxis. In: Raidl, G.R., Cagnoni, S., Cardalda, J.J.R., Corne, D.W., Gottlieb, J., Guillot, A., Hart, E., Johnson, C.G., Marchiori, E., Meyer, J.-A., Middendorf, M. (eds.) EvoIASP 2003, EvoWorkshops 2003, EvoSTIM 2003, EvoROB/EvoRobot 2003, EvoCOP 2003, EvoBIO 2003, and EvoMUSART 2003. LNCS, vol. 2611, pp. 616–625. Springer, Heidelberg (2003)
Di Paolo, E.A.: Evolving spike-timing dependent plasticity for robot control. In: EPSRC/BBSRC International Workshop: Biologically-inspired Robotics, The Legacy of W. Grey Walter, WGW 2002, Labs, Bristo, August 14 - 16 (2002)
Di Paolo, E.A.: Evolving spike-timing dependent plasticity for single-trial learning in robots. Philosophical Transactions of the Royal Society A. 361, 2299–2319 (2003)
Roggen, D., Hofmann, S., Thoma, Y., Floreano, D.: Hardware spiking neural network with run-time reconfigurable connectivity in an autonomous robot. In: 2003 NASA/DoD Conference on Evolvable Hardware (EH 2003), vol. 199 (2003)
Van Leeuwen, M., Vreeken, J., Koopman, A.: Evolving vision-based navigation on wheeled robots. Institute for Information and Computing Sciences, Utrecht University (2003)
Katada, Y., Ohkura, K., Ueda, K.: Artificial evolution of pulsed neural networks on the motion pattern classification system. In: Proceedings of the 2003 IEEE International Symposium on Computational Intelligence in Robotics and Automation (CIRA), Kobe, Japan, July 16 - 20, 2003, pp. 318–323 (2003)
Katada, Y., Ohkura, K., Ueda, K.: An approach to evolutionary robotics using a genetic algorithm with a variable mutation rate strategy. In: Yao, X., Burke, E.K., Lozano, J.A., Smith, J., Merelo-Guervós, J.J., Bullinaria, J.A., Rowe, J.E., Tiňo, P., Kabán, A., Schwefel, H.-P. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 952–961. Springer, Heidelberg (2004)
Soula, H., Beslon, G., Favrel, J.: Evolving spiking neural nets to control an animat. In: Proceedings of International Conference of Artificial Neural Networks and Genetic Algorithm 2003, Roanne, France (2003)
Hagras, H., Pounds-Cornish, A., Colley, M., Callaghan, V., Clarke, G.: Evolving spiking neural network controllers for autonomous robots. In: Proceedings of the 2004 IEEE International Conference on Robotics and Automation, New Orleans, USA (2004)
Federici, D.: A regenerating spiking neural network. Neural Networks 18(5-6), 746–754 (2005)
Federici, D.: Evolving developing spiking neural networks. In: Proceedings of CEC 2005 - IEEE Congress on Evolutionary Computation (2005)
Damper, R., Scutt, T.: Biologically-motivated neural learning in situated systems. In: Proceedings of the 1998 IEEE International Symposium on Circuits and Systems (ISCAS 1998) (1998)
Damper, R., French, R.L.B., Scutt, T.: Arbib: An autonomous robot based on inspirations from biology. Robotics and Autonomous Systems 31(4), 247–274 (2000)
Soula, H., Alwan, A., Beslon, G.: Obstacle avoidance learning in a spiking neural network. In: Last Minute Results of Simulation of Adaptive Behavior, Los Angeles, CA (2004)
Soula, H., Alwan, A., Beslon, G.: Learning at the edge of chaos: Temporal coupling of spiking neuron controller of autonomous robotic. In: Proceedings of AAAI Spring Symposia on Developmental Robotics, Stanford, CA (2005)
Florian, R.V.: A reinforcement learning algorithm for spiking neural networks. In: Zaharie, D., Petcu, D., Negru, V., Jebelean, T., Ciobanu, G., Cicortaş, A., Abraham, A., Paprzycki, M. (eds.) Proceedings of the Seventh International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC 2005), pp. 299–306. IEEE Computer Society, Los Alamitos (2005)
Florian, R.V.: Thyrix: A simulator for articulated agents capable of manipulating objects. Technical Report Coneural-03-02, Center for Cognitive and Neural Studies, Cluj, Romania (2003)
Pfeifer, R., Scheier, C.: Understanding intelligence. MIT Press, Cambridge (1999)
Mureşan, R.C., Ignat, I.: The Neocortex neural simulator: A modern design. In: International Conference on Intelligent Engineering Systems, Cluj-Napoca, Romania, September 19-21 (2004)
Markram, H., Lübke, J., Frotscher, M., Sakmann, B.: Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science 275(5297), 213–215 (1997)
Bi, G.Q., Poo, M.M.: Synaptic modifications in cultured hippocampal neurons: Dependence on spike timing, synaptic strength, and postsynaptic cell type. Journal of Neuroscience 18(24), 10464–10472 (1998)
Bi, G.Q.: Spatiotemporal specificity of synaptic plasticity: cellular rules and mechanisms. Biological Cybernetics 87, 319–332 (2002)
Dan, Y., Poo, M.M.: Spike timing-dependent plasticity of neural circuits. Neuron 44, 23–30 (2004)
Song, S., Miller, K.D., Abbott, L.F.: Competitive hebbian learning through spike-timing-dependent synaptic plasticity. Nature Neuroscience 3, 919–926 (2000)
Turney, P.: Myths and legends of the Baldwin effect. In: Proceedings of the Workshop on Evolutionary Computing and Machine Learning at the 13th International Conference on Machine Learning (ICML 1996), Bari, Italy, pp. 135–142 (1996)
Beer, R.: Toward the evolution of dynamical neural networks for minimally cognitive behavior. In: Maes, P., Mataric, M., Meyer, J., Pollack, J., Wilson, S. (eds.) From animals to animats 4: Proceedings of the Fourth International Conference on Simulation of Adaptive Behavior, pp. 421–429. MIT Press, Cambridge (1996)
Slocum, A.C., Downey, D.C., Beer, R.D.: Further experiments in the evolution of minimally cognitive behavior: From perceiving affordances to selective attention. In: Meyer, J.A., Berthoz, A., Floreano, D., Roitblat, H.L., Wilson, S.W. (eds.) From animals to animats 6: Proceedings of the Sixth International Conference on Simulation of Adaptive Behavior, pp. 430–439. MIT Press, Cambridge (2000)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Florian, R.V. (2006). Spiking Neural Controllers for Pushing Objects Around. In: Nolfi, S., et al. From Animals to Animats 9. SAB 2006. Lecture Notes in Computer Science(), vol 4095. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11840541_47
Download citation
DOI: https://doi.org/10.1007/11840541_47
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-38608-7
Online ISBN: 978-3-540-38615-5
eBook Packages: Computer ScienceComputer Science (R0)