[go: up one dir, main page]

Skip to main content

Spiking Neural Controllers for Pushing Objects Around

  • Conference paper
From Animals to Animats 9 (SAB 2006)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4095))

Included in the following conference series:

Abstract

We evolve spiking neural networks that implement a seek-push-release drive for a simple simulated agent interacting with objects. The evolved agents display minimally-cognitive behavior, by switching as a function of context between the three sub-behaviors and by being able to discriminate relative object size. The neural controllers have either static synapses or synapses featuring spike-timing-dependent plasticity (STDP). Both types of networks are able to solve the task with similar efficacy, but networks with plastic synapses evolved faster. In the evolved networks, plasticity plays a minor role during the interaction with the environment and is used mostly to tune synapses when networks start to function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Florian, R.V.: Autonomous artificial intelligent agents. Technical Report Coneural-03-01, Center for Cognitive and Neural Studies, Cluj, Romania (2003)

    Google Scholar 

  2. Maas, W., Bishop, C.M. (eds.): Pulsed neural networks. MIT Press, Cambridge (1999)

    Google Scholar 

  3. Gerstner, W., Kistler, W.M.: Spiking neuron models. Cambridge University Press, Cambridge (2002)

    MATH  Google Scholar 

  4. Florian, R.V.: Biologically inspired neural networks for the control of embodied agents. Technical Report Coneural-03-03, Center for Cognitive and Neural Studies, Cluj, Romania (2003)

    Google Scholar 

  5. DasGupta, B., Schnitger, G.: Analog versus discrete neural networks. Neural Computation 8, 805–818 (1996)

    Article  Google Scholar 

  6. Maass, W., Schnitger, G., Sontag, E.D.: A comparison of the computational power of sigmoid and boolean threshold circuits. In: Roychowdhury, V.P., Siu, K., Orlitsky, A. (eds.) Theoretical Advances in Neural Computation and Learning, pp. 127–151. Kluwer Academic Publishers, Dordrecht (1994)

    Google Scholar 

  7. Maas, W.: Networks of spiking neurons: the third generation of neural network models. Neural Networks 10, 1659–1671 (1997)

    Article  Google Scholar 

  8. Floreano, D., Mattiussi, C.: Evolution of spiking neural controllers for autonomous vision-based robots. In: Gomi, T. (ed.) Evolutionary Robotics IV. Springer, Heidelberg (2001)

    Google Scholar 

  9. Di Paolo, E.A.: Spike timing dependent plasticity for evolved robots. Adaptive Behavior 10, 243–263 (2002)

    Article  Google Scholar 

  10. Saggie, K., Keinan, A., Ruppin, E.: Solving a Delayed Response Task with Spiking and McCulloch-Pitts Agents. In: Banzhaf, W., Ziegler, J., Christaller, T., Dittrich, P., Kim, J.T. (eds.) ECAL 2003. LNCS, vol. 2801, pp. 199–208. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  11. Saggie-Wexler, K., Keinan, A., Ruppin, E.: Neural processing of counting in evolved spiking and mcculloch-pitts agents. Artificial Life 12(1), 1–16 (2005)

    Article  Google Scholar 

  12. Ruppin, E.: Evolutionary embodied agents: A neuroscience perspective. Nature Reviews Neuroscience 3, 132–142 (2002)

    Article  Google Scholar 

  13. Floreano, D., Schoeni, N., Caprari, G., Blynel, J.: Evolutionary bits’n’spikes. In: Standish, R.K., Bedau, M.A., Abbass, H.A. (eds.) Artificial Life VIII: Proceedings of the Eight International Conference on Artificial Life. MIT Press, Boston (2002)

    Google Scholar 

  14. Floreano, D., Zufferey, J.C., Mattiussi, C.: Evolving spiking neurons from wheels to wings. In: Proceedings of the 3rd International Symposium on Human and Artificial Intelligence Systems, Fukui, Japan (2002)

    Google Scholar 

  15. French, R.L.B., Damper, R.I.: Evolving a nervous system of spiking neurons for a behaving robot. In: Proceedings of Genetic and Evolutionary Computation Conference (GECCO 2001), San Francisco, CA, pp. 1099–1106 (2001)

    Google Scholar 

  16. French, R.L.B., Damper, R.I.: Evolution of a circuit of spiking neurons for phototaxis in a Braitenberg vehicle. In: Hallam, B., Floreano, D., Hallam, J., Hayes, G., Meyer, J.A. (eds.) From animals to animats 7: Proceedings of the Seventh International Conference on Simulation of Adaptive Behavior, pp. 335–344. MIT Press, Cambridge (2002)

    Google Scholar 

  17. Damper, R.I., French, R.L.B.: Evolving Spiking Neuron Controllers for Phototaxis and Phonotaxis. In: Raidl, G.R., Cagnoni, S., Cardalda, J.J.R., Corne, D.W., Gottlieb, J., Guillot, A., Hart, E., Johnson, C.G., Marchiori, E., Meyer, J.-A., Middendorf, M. (eds.) EvoIASP 2003, EvoWorkshops 2003, EvoSTIM 2003, EvoROB/EvoRobot 2003, EvoCOP 2003, EvoBIO 2003, and EvoMUSART 2003. LNCS, vol. 2611, pp. 616–625. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  18. Di Paolo, E.A.: Evolving spike-timing dependent plasticity for robot control. In: EPSRC/BBSRC International Workshop: Biologically-inspired Robotics, The Legacy of W. Grey Walter, WGW 2002, Labs, Bristo, August 14 - 16 (2002)

    Google Scholar 

  19. Di Paolo, E.A.: Evolving spike-timing dependent plasticity for single-trial learning in robots. Philosophical Transactions of the Royal Society A. 361, 2299–2319 (2003)

    Article  Google Scholar 

  20. Roggen, D., Hofmann, S., Thoma, Y., Floreano, D.: Hardware spiking neural network with run-time reconfigurable connectivity in an autonomous robot. In: 2003 NASA/DoD Conference on Evolvable Hardware (EH 2003), vol. 199 (2003)

    Google Scholar 

  21. Van Leeuwen, M., Vreeken, J., Koopman, A.: Evolving vision-based navigation on wheeled robots. Institute for Information and Computing Sciences, Utrecht University (2003)

    Google Scholar 

  22. Katada, Y., Ohkura, K., Ueda, K.: Artificial evolution of pulsed neural networks on the motion pattern classification system. In: Proceedings of the 2003 IEEE International Symposium on Computational Intelligence in Robotics and Automation (CIRA), Kobe, Japan, July 16 - 20, 2003, pp. 318–323 (2003)

    Google Scholar 

  23. Katada, Y., Ohkura, K., Ueda, K.: An approach to evolutionary robotics using a genetic algorithm with a variable mutation rate strategy. In: Yao, X., Burke, E.K., Lozano, J.A., Smith, J., Merelo-Guervós, J.J., Bullinaria, J.A., Rowe, J.E., Tiňo, P., Kabán, A., Schwefel, H.-P. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 952–961. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  24. Soula, H., Beslon, G., Favrel, J.: Evolving spiking neural nets to control an animat. In: Proceedings of International Conference of Artificial Neural Networks and Genetic Algorithm 2003, Roanne, France (2003)

    Google Scholar 

  25. Hagras, H., Pounds-Cornish, A., Colley, M., Callaghan, V., Clarke, G.: Evolving spiking neural network controllers for autonomous robots. In: Proceedings of the 2004 IEEE International Conference on Robotics and Automation, New Orleans, USA (2004)

    Google Scholar 

  26. Federici, D.: A regenerating spiking neural network. Neural Networks 18(5-6), 746–754 (2005)

    Article  Google Scholar 

  27. Federici, D.: Evolving developing spiking neural networks. In: Proceedings of CEC 2005 - IEEE Congress on Evolutionary Computation (2005)

    Google Scholar 

  28. Damper, R., Scutt, T.: Biologically-motivated neural learning in situated systems. In: Proceedings of the 1998 IEEE International Symposium on Circuits and Systems (ISCAS 1998) (1998)

    Google Scholar 

  29. Damper, R., French, R.L.B., Scutt, T.: Arbib: An autonomous robot based on inspirations from biology. Robotics and Autonomous Systems 31(4), 247–274 (2000)

    Article  Google Scholar 

  30. Soula, H., Alwan, A., Beslon, G.: Obstacle avoidance learning in a spiking neural network. In: Last Minute Results of Simulation of Adaptive Behavior, Los Angeles, CA (2004)

    Google Scholar 

  31. Soula, H., Alwan, A., Beslon, G.: Learning at the edge of chaos: Temporal coupling of spiking neuron controller of autonomous robotic. In: Proceedings of AAAI Spring Symposia on Developmental Robotics, Stanford, CA (2005)

    Google Scholar 

  32. Florian, R.V.: A reinforcement learning algorithm for spiking neural networks. In: Zaharie, D., Petcu, D., Negru, V., Jebelean, T., Ciobanu, G., Cicortaş, A., Abraham, A., Paprzycki, M. (eds.) Proceedings of the Seventh International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC 2005), pp. 299–306. IEEE Computer Society, Los Alamitos (2005)

    Google Scholar 

  33. Florian, R.V.: Thyrix: A simulator for articulated agents capable of manipulating objects. Technical Report Coneural-03-02, Center for Cognitive and Neural Studies, Cluj, Romania (2003)

    Google Scholar 

  34. Pfeifer, R., Scheier, C.: Understanding intelligence. MIT Press, Cambridge (1999)

    Google Scholar 

  35. Mureşan, R.C., Ignat, I.: The Neocortex neural simulator: A modern design. In: International Conference on Intelligent Engineering Systems, Cluj-Napoca, Romania, September 19-21 (2004)

    Google Scholar 

  36. Markram, H., Lübke, J., Frotscher, M., Sakmann, B.: Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science 275(5297), 213–215 (1997)

    Article  Google Scholar 

  37. Bi, G.Q., Poo, M.M.: Synaptic modifications in cultured hippocampal neurons: Dependence on spike timing, synaptic strength, and postsynaptic cell type. Journal of Neuroscience 18(24), 10464–10472 (1998)

    Google Scholar 

  38. Bi, G.Q.: Spatiotemporal specificity of synaptic plasticity: cellular rules and mechanisms. Biological Cybernetics 87, 319–332 (2002)

    Article  MATH  Google Scholar 

  39. Dan, Y., Poo, M.M.: Spike timing-dependent plasticity of neural circuits. Neuron 44, 23–30 (2004)

    Article  Google Scholar 

  40. Song, S., Miller, K.D., Abbott, L.F.: Competitive hebbian learning through spike-timing-dependent synaptic plasticity. Nature Neuroscience 3, 919–926 (2000)

    Article  Google Scholar 

  41. Turney, P.: Myths and legends of the Baldwin effect. In: Proceedings of the Workshop on Evolutionary Computing and Machine Learning at the 13th International Conference on Machine Learning (ICML 1996), Bari, Italy, pp. 135–142 (1996)

    Google Scholar 

  42. Beer, R.: Toward the evolution of dynamical neural networks for minimally cognitive behavior. In: Maes, P., Mataric, M., Meyer, J., Pollack, J., Wilson, S. (eds.) From animals to animats 4: Proceedings of the Fourth International Conference on Simulation of Adaptive Behavior, pp. 421–429. MIT Press, Cambridge (1996)

    Google Scholar 

  43. Slocum, A.C., Downey, D.C., Beer, R.D.: Further experiments in the evolution of minimally cognitive behavior: From perceiving affordances to selective attention. In: Meyer, J.A., Berthoz, A., Floreano, D., Roitblat, H.L., Wilson, S.W. (eds.) From animals to animats 6: Proceedings of the Sixth International Conference on Simulation of Adaptive Behavior, pp. 430–439. MIT Press, Cambridge (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Florian, R.V. (2006). Spiking Neural Controllers for Pushing Objects Around. In: Nolfi, S., et al. From Animals to Animats 9. SAB 2006. Lecture Notes in Computer Science(), vol 4095. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11840541_47

Download citation

  • DOI: https://doi.org/10.1007/11840541_47

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-38608-7

  • Online ISBN: 978-3-540-38615-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics