[go: up one dir, main page]

Skip to main content

Neuron Selection for RBF Neural Network Classifier Based on Multiple Granularities Immune Network

  • Conference paper
Advances in Neural Networks - ISNN 2006 (ISNN 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3971))

Included in the following conference series:

  • 84 Accesses

Abstract

The central problem in training a radial basis function neural network is the selection of hidden layer neurons, which includes the selection of the center and width of those neurons. In this paper, we propose to select hidden layer neurons based on multiple granularities immune network. Firstly a multiple granularities immune network (MGIN) algorithm is employed to reduce the data and get the candidate hidden neurons and construct an original RBF network including all candidate neurons. Secondly, the removing redundant neurons procedure is used to get a smaller network. Some experimental results show that the network obtained tends to generalize well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Chen, S., Cowan, C.F., Grant, P.M.: Orthogonal Least Squares Learning Algorithms for Redial Basis Function Networks. IEEE Trans. Neural Networks 2(2), 302–309 (1991)

    Article  Google Scholar 

  2. Mao, K.Z., Huang, G.B.: Neuron Selection for RBF Neural Network Classifier Based on Data Structure Preserving Criterion. IEEE Trans. Neural Networks 16(6), 1531–1540 (2005)

    Article  Google Scholar 

  3. Huang, G.B., Saratchandran, P.: A Generalized Growing and Pruning RBF (GGAP-RBF) Neural Network for Function Approximation. IEEE Trans. Neural Networks 16(1), 57–67 (2005)

    Article  Google Scholar 

  4. Lee, S.J., Hou, C.L.: An ART-Based Construction of RBF Networks. IEEE Trans. Neural Networks 13(6), 1308–1321 (2002)

    Article  Google Scholar 

  5. Lee, H.M., Chen, C.M.: A Self-Organizing HCMAC Neural-Network Classifier. IEEE Trans. Neural Networks 14(1), 15–27 (2003)

    Article  Google Scholar 

  6. Miller, D., Rao, A.V.: A Global Optimization Technique for Statistical Classifier Design. IEEE Trans. on Signal Processing 44(12), 3108–3122 (1996)

    Article  Google Scholar 

  7. Timmis, J., Neal, M., Hunt, J.: An Artificial Immune System for Data Analysis. Biosystems 55(1), 143–150 (2000)

    Article  Google Scholar 

  8. Zhong, J., Wu, Z.F.: A Novel Dynamic Clustering Algorithm Based on Immune Network and Tabu Search. Chinese Journal of Electronics 14(2), 285–288 (2005)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zhong, J., Ye, C.X., Feng, Y., Zhou, Y., Wu, Z.F. (2006). Neuron Selection for RBF Neural Network Classifier Based on Multiple Granularities Immune Network. In: Wang, J., Yi, Z., Zurada, J.M., Lu, BL., Yin, H. (eds) Advances in Neural Networks - ISNN 2006. ISNN 2006. Lecture Notes in Computer Science, vol 3971. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11759966_127

Download citation

  • DOI: https://doi.org/10.1007/11759966_127

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-34439-1

  • Online ISBN: 978-3-540-34440-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics