Abstract
We characterize the performance and energy attributes of scientific applications based on nonlinear partial differential equations (PDEs). where the dominant cost is that of sparse linear system solution. We obtain performance and energy metrics using cycle-accurate emulations on a processor and memory system derived from the PowerPC RISC architecture with extensions to resemble the processor in the BlueGene/L. These results indicate that low-power modes of CPUs such as Dynamic Voltage Scaling (DVS) can indeed result in energy savings at the expense of performance degradation. We then consider the impact of certain memory subsystem optimizations to demonstrate that these optimizations in conjunction with DVS can provide faster execution time and lower energy consumption. For example, on the optimized architecture, if DVS is used to scale down the processor to 600MHz, execution times are faster by 45% with energy reductions of 75% compared to the original architecture at 1GHz. The insights gained from this study can help scientific applications better utilize the low-power modes of processors as well as guide the selection of hardware optimizations in future power-aware, high-performance computers.
This work is supported by the National Science Foundation through grants ACI-0102537, CCF-0444345 and DMR-0205232.
Chapter PDF
Similar content being viewed by others
Keywords
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
Anderson, W.K., Gropp, W.D., Kaushik, D.K., et al.: Achieving high sustained performance in an unstructured mesh CFD application. In: SC 1999 (1999)
Bailey, D., Harris, T., Saphir, W., et al.: The NAS parallel benchmarks 2.0. Technical Report NAS-95-020, NASA Ames Research Center (1995)
Balay, S., Buschelman, K., Eijkhout, V., et al.: PETSc users manual. Technical Report ANL-95/11 - Revision 2.3.0, Argonne National Laboratory (2005), See http://www.mcs.anl.gov/petsc
Barrett, R., Berry, M., Chan, T.F., et al.: Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods, Software, Environments, Tools. SIAM, Philadelphia (1994)
Bhowmick, S., McInnes, L.C., Norris, B., et al.: The role of multi-method linear solvers in PDE-based simulations. In: Kumar, V., Gavrilova, M.L., Tan, C.J.K., L’Ecuyer, P. (eds.) Architecting Dependable Systems. LNCS, vol. 2677. Springer, Heidelberg (2003)
Bircher, W.L., Valluri, M., John, L., et al.: Runtime identification of microprocessor energy saving opportunities. In: ISLPED 2005 (2005)
Brooks, D., Tiwari, V., Martonosi, M.: Wattch: A framework for architectural-level power analysis and optimizations. In: ISCA 2000 (2000)
Burger, D.C., Austin, T.M.: The SimpleScalar tool set, version 2.0. Technical Report 1342, UW Madison Computer Sciences (1997)
Casmira, J., Grunwald, D.: Dynamic instruction scheduling slack. In: 2000 KoolChips Workshop (2000)
Coffey, T.S., Kelley, C.T., Keyes, D.E.: Pseudo-transient continuation and differential-algebraic equations. SIAM J. Sci. Comput. 25(2) (2003)
Contreras, G., Martonosi, M.: Power prediction for Intel XScale processors using performance monitoring unit events. In: ISLPED 2005 (2005)
Standard Performance Evaluation Corporation. The SPEC benchmark suite, http://www.spec.org
de Rose, L.A., Reed, D.A.: SvPablo: A multi-language architecture-independent performance analysis system. In: ICPP 1999 (1999)
Feng, X., Ge, R., Cameron, K.W.: Power and energy profiling of scientific applications on distributed systems. In: IPDPS 2005 (2005)
Fields, B., Bodik, R., Hill, M.M.: Slack: Maximizing performance under technological constraints. In: ISCA 2002 (2002)
Fryxell, B., Olson, K., Ricker, P., et al.: FLASH: An adaptive-mesh hydrodynamics code for modeling astrophysical thermonuclear flashes. Astrophys. J. Suppl. (2000)
Gara, A., Blumrich, M.A., Chen, D., et al.: Overview of the Blue Gene/L system architecture. IBM J. Res. & Dev. 49(2/3) (2005)
Ge, R., Feng, X., Cameron, K.W.: Performance-constrained, distributed DVS scheduling for scientific applications on power-aware clusters. In: SC 2005 (2005)
Hsu, C., Feng, W.: A power-aware run-time system for high-performance computing. In: SC 2005 (2005)
Kappiah, N., Freeh, V.W., Lowenthal, D.K.: Just-in-time dynamic voltage scaling: Exploiting inter-node slack to save energy in MPI programs. In: SC 2005 (2005)
Malkowski, K., Lee, I., Raghavan, P., et al.: Memory optimizations for tuned scientific applications: An evaluation of performance-power characteristics. In: ISPASS 2006 (2006) (submitted)
McInnes, L., Norris, B., Bhowmick, S., et al.: Adaptive sparse linear solvers for implicit CFD using Newton-Krylov algorithms, Boston, USA, June 17-20, vol. 2 (2003)
Nocedal, J., Wright, S.J.: Numerical Optimization. Springer, Heidelberg (1999)
Saad, Y.: Iterative Methods for Sparse Liner Systems, 2nd edn. SIAM, Philadelphia (2003)
Semeraro, G., Albonesi, D.H., Dropsho, S.G., et al.: Dynamic frequency and voltage control for a multiple clock domain microarchitecture. In: MICRO 2002 (2002)
Tang, X.Z., Fu, G.Y., Jardin, S.C., et al.: Resistive magnetohydrodynamics simulation of fusion plasmas. Technical Report PPPL-3532, Princeton Plasma Physics Laboratory (2001)
Top500.org. Top 500 supercomputer sites (2005), http://top500.org
Yuan, W., Nahrstedt, K.: Energy-efficient soft real-time CPU scheduling for mobile multimedia systems. In: SOSP 2003 (2003)
Zhu, D., Melhem, R., Childers, B.R.: Scheduling with dynamic voltage/speed adjustment using slack reclamation in multi-processor real-time systems. In: RTSS 2001 (2001)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Akioka, S., Malkowski, K., Raghavan, P., Irwin, M.J., McInnes, L.C., Norris, B. (2006). Characterizing the Performance and Energy Attributes of Scientific Simulations. In: Alexandrov, V.N., van Albada, G.D., Sloot, P.M.A., Dongarra, J. (eds) Computational Science – ICCS 2006. ICCS 2006. Lecture Notes in Computer Science, vol 3991. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11758501_36
Download citation
DOI: https://doi.org/10.1007/11758501_36
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-34379-0
Online ISBN: 978-3-540-34380-6
eBook Packages: Computer ScienceComputer Science (R0)