[go: up one dir, main page]

Skip to main content

Nonlinear Exploratory Data Analysis Applied to Seismic Signals

  • Conference paper
Neural Nets (WIRN 2005, NAIS 2005)

Abstract

This paper compares three unsupervised projection methods: Principal Component Analysis (PCA), which is linear, Self-Organizing Map (SOM) and Curvilinear Component Analysis (CCA), which are both nonlinear. Performance comparison of the three methods is made on a set of seismic data recorded on Stromboli that includes three classes of signals: explosion-quakes, landslides, and microtremors. The unsupervised analysis of the signals is able to discover the nature of the seismic events. Our analysis shows that the SOM algorithm discriminates better than CCA and PCA on the data under examination.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Demartines, P., Herault, J.: Curvilinear Component Analysis: A Self Organizing Neural Network for Nonlinear Mapping of Data Sets. IEEE Trans. on Neural Networks 8, 48–154 (1997)

    Article  Google Scholar 

  2. Herault, J., Guerin-Dugue, A., Villemain, P.: Searching for the Embedded Manifolds in Highdimensional Data, Problems and Unsolved Questions. In: Proceedings of ECANN Bruge (2002)

    Google Scholar 

  3. Jollife, I.T.: Principal Component Analysis. Springer, New York (1986)

    Book  Google Scholar 

  4. Kohonen, T., Hynninen, J., Kangas, J., Laaksonen, J.: SOM_PAK Program Package. Report A31. Helsinki University, Finland (1996)

    Google Scholar 

  5. Kohonen, T.: Self-Organizing Maps, 2nd edn. Series in Information Sciences, vol. 30. Springer, Heidelberg (1997)

    Book  MATH  Google Scholar 

  6. Lee, J.A., Lendasse, A., Donckers, N., Verleysen, M.: A Robust Nonlinear Projection Method. In: Proceedings of ESANN 2000 D-Facto pubbl., pp. 13–20 (2000)

    Google Scholar 

  7. Makhoul, J.: Linear prediction: a Tutorial Review. IEEE 63, 561–580 (1975)

    Article  Google Scholar 

  8. Esposito, A.M., Giudicepietro, F., Scarpetta, S., D’Auria, L., Marinaro, M., Martini, M.: Automatic Discrimination of Landslides Seismic Signals at Stromboli Volcano using Neural Network (submitted)

    Google Scholar 

  9. Masiello, S., Esposito, A.M., Scarpetta, S., Giudicepietro, F., Esposito, A., Marinaro, M.: Application of Self Organized Maps and Curvilinear Components Analysis to the Discrimination of Vesuvius Seismic Signals. To appear in Proceedings of the Workshop on Self Organizing Map (WSOM), Paris, September 5-8 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Esposito, A.M., Scarpetta, S., Giudicepietro, F., Masiello, S., Pugliese, L., Esposito, A. (2006). Nonlinear Exploratory Data Analysis Applied to Seismic Signals. In: Apolloni, B., Marinaro, M., Nicosia, G., Tagliaferri, R. (eds) Neural Nets. WIRN NAIS 2005 2005. Lecture Notes in Computer Science, vol 3931. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11731177_11

Download citation

  • DOI: https://doi.org/10.1007/11731177_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-33183-4

  • Online ISBN: 978-3-540-33184-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics