Abstract
This paper compares three unsupervised projection methods: Principal Component Analysis (PCA), which is linear, Self-Organizing Map (SOM) and Curvilinear Component Analysis (CCA), which are both nonlinear. Performance comparison of the three methods is made on a set of seismic data recorded on Stromboli that includes three classes of signals: explosion-quakes, landslides, and microtremors. The unsupervised analysis of the signals is able to discover the nature of the seismic events. Our analysis shows that the SOM algorithm discriminates better than CCA and PCA on the data under examination.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Demartines, P., Herault, J.: Curvilinear Component Analysis: A Self Organizing Neural Network for Nonlinear Mapping of Data Sets. IEEE Trans. on Neural Networks 8, 48–154 (1997)
Herault, J., Guerin-Dugue, A., Villemain, P.: Searching for the Embedded Manifolds in Highdimensional Data, Problems and Unsolved Questions. In: Proceedings of ECANN Bruge (2002)
Jollife, I.T.: Principal Component Analysis. Springer, New York (1986)
Kohonen, T., Hynninen, J., Kangas, J., Laaksonen, J.: SOM_PAK Program Package. Report A31. Helsinki University, Finland (1996)
Kohonen, T.: Self-Organizing Maps, 2nd edn. Series in Information Sciences, vol. 30. Springer, Heidelberg (1997)
Lee, J.A., Lendasse, A., Donckers, N., Verleysen, M.: A Robust Nonlinear Projection Method. In: Proceedings of ESANN 2000 D-Facto pubbl., pp. 13–20 (2000)
Makhoul, J.: Linear prediction: a Tutorial Review. IEEE 63, 561–580 (1975)
Esposito, A.M., Giudicepietro, F., Scarpetta, S., D’Auria, L., Marinaro, M., Martini, M.: Automatic Discrimination of Landslides Seismic Signals at Stromboli Volcano using Neural Network (submitted)
Masiello, S., Esposito, A.M., Scarpetta, S., Giudicepietro, F., Esposito, A., Marinaro, M.: Application of Self Organized Maps and Curvilinear Components Analysis to the Discrimination of Vesuvius Seismic Signals. To appear in Proceedings of the Workshop on Self Organizing Map (WSOM), Paris, September 5-8 (2005)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Esposito, A.M., Scarpetta, S., Giudicepietro, F., Masiello, S., Pugliese, L., Esposito, A. (2006). Nonlinear Exploratory Data Analysis Applied to Seismic Signals. In: Apolloni, B., Marinaro, M., Nicosia, G., Tagliaferri, R. (eds) Neural Nets. WIRN NAIS 2005 2005. Lecture Notes in Computer Science, vol 3931. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11731177_11
Download citation
DOI: https://doi.org/10.1007/11731177_11
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-33183-4
Online ISBN: 978-3-540-33184-1
eBook Packages: Computer ScienceComputer Science (R0)