[go: up one dir, main page]

Skip to main content

The 2005 AMI System for the Transcription of Speech in Meetings

  • Conference paper
Machine Learning for Multimodal Interaction (MLMI 2005)

Abstract

In this paper we describe the 2005 AMI system for the transcription of speech in meetings used in the 2005 NIST RT evaluations. The system was designed for participation in the speech to text part of the evaluations, in particular for transcription of speech recorded with multiple distant microphones and independent headset microphones. System performance was tested on both conference room and lecture style meetings. Although input sources are processed using different front-ends, the recognition process is based on a unified system architecture. The system operates in multiple passes and makes use of state of the art technologies such as discriminative training, vocal tract length normalisation, heteroscedastic linear discriminant analysis, speaker adaptation with maximum likelihood linear regression and minimum word error rate decoding. In this paper we describe the system performance on the official development and test sets for the NIST RT05s evaluations. The system was jointly developed in less than 10 months by a multi-site team and was shown to achieve competitive performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bulyko, I., Ostendorf, M., Stolcke, A.: Getting More Mileage from Web Text Sources for Conversational Speech Language Modeling using Class-Dependent Mixtures. In: Proc. HLT 2003 (2003)

    Google Scholar 

  2. Burger, S., MacLaren, V., Yu, H.: The ISL Meeting Corpus: The Impact of Meeting Type on Speech Style. In: Proc. ICSLP 2002 (2002)

    Google Scholar 

  3. Carletta, J., Ashby, S., Bourban, S., Guillemot, M., Kronenthal, M., Lathoud, G., Lincoln, M., McCowan, I., Hain, T., Kraaij, W., Post, W., Kadlec, J., Wellner, P., Flynn, M., Reidsma, D.: The AMI Meeting Corpus. In: Renals, S., Bengio, S. (eds.) MLMI 2005. LNCS, vol. 3869, pp. 28–39. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  4. Cox, H., Zeskind, R., Kooij, I.: Practical supergain. IEEE Trans. ASSP 34(3), 393–397 (1986)

    Article  Google Scholar 

  5. Cox, H., Zeskind, R., Owen, M.: Robust adaptive beamforming. IEEE Trans. ASSP 35(10), 1365–1376 (1987)

    Article  Google Scholar 

  6. Fitt, S.: Documentation and user guide to UNISYN lexicon and post-lexical rules, Tech. Rep., Centre for Speech Technology Research, Edinburgh (2000)

    Google Scholar 

  7. Gales, M.J.F., Woodland, P.C.: Mean and Variance Adaptation within the MLLR Framework. Computer Speech & Language 10, 249–264 (1996)

    Article  Google Scholar 

  8. Garafolo, J.S., Laprun, C.D., Michel, M., Stanford, V.M., Tabassi, E.: Proc. 4th Intl. Conf. on Language Resources and Evaluation (LREC 2004) (2004)

    Google Scholar 

  9. Gauvain, J.L., Lee, C.: MAP estimation for multivariate Gaussian mixture observation of Markov Chains. IEEE Tr. Speech & Audio Processing 2, 291–298 (1994)

    Article  Google Scholar 

  10. Hain, T., Burget, L., Dines, J., McCowan, I., Garau, G., Karafiat, M., Lincoln, M., Moore, D., Wan, V., Ordelman, R., Renals, S.: The Development of the AMI System for the Transcription of Speech in Meetings. In: Proc. MLMI 2005, Edinburgh (2005)

    Google Scholar 

  11. Hain, T.: Implicit modelling of pronunciation variation in automatic speech recognition. Speech Communication 46(2), 171–188 (2005)

    Article  Google Scholar 

  12. Janin, A., Baron, D., Edwards, J., Ellis, D., Gelbart, D., Morgan, N., Peskin, B., Pfau, T., Shriberg, E., Stolcke, A., Wooters, C.: The ICSI Meeting Corpus. In: Proc. ICASSP 2003, Hong Kong (2003)

    Google Scholar 

  13. Knapp, C.H., Carter, G.C.: The generalized correlation method for estimation of time delay/ IEEE Transactions on Acoustics. Speech and Signal Processing, Trans. ASSP 24, 320–327 (1976)

    Article  Google Scholar 

  14. Kumar, N.: Investigation of Silicon-Auditory Models and Generalization of Linear Discriminant Analysis for Improved Speech Recognition. PhD thesis, John Hopkins University, Baltimore (1997)

    Google Scholar 

  15. Burget, L.: Combination of Speech Features Using Smoothed Heteroscedastic Linear Discriminant Analysis. In: Proc. ICSLP 2004, Jeju Island, Korea, pp. 4–7 (2004)

    Google Scholar 

  16. Mangu, L., Brill, E., Stolcke, A.: Finding Consensus Among Words: Lattice-Based Word Error Minimization. In: Proc. Eurospeech 1999, Budapest, pp. 495–498 (1999)

    Google Scholar 

  17. Messerschmitt, D., Hedberg, D., Cole, C., Haoui, A., Winship, P.: Digital voice echo canceller with a TMS32020. Appl. Rep. SPRA129, Texas Instruments (1989)

    Google Scholar 

  18. Spring 2004 (RT04S) Rich Transcription Meeting Recognition Evaluation Plan. NIST, US, Available at: http://www.nist.gov/speech

  19. Pfau, T., Ellis, D.P.W.: Hidden Markov model based speech activity detection for the ICSI meeting project. In: Eurospeech 2001 (2001)

    Google Scholar 

  20. Povey, D., Woodland, P.C.: Minimum Phone Error and I-Smoothing for Improved Discriminative Training. In: Proc. ICASSP 2002, Orlando (2002)

    Google Scholar 

  21. Stolcke, A., Wooters, C., Mirghafori, N., Pirinen, T., Bulyko, I., Gelbart, D., Graciarena, M., Otterson, S., Peskin, B., Ostendorf, M.: Progress in Meeting Recognition: The ICSI-SRI-UW Spring 2004 Evaluation System. In: Proc. NIST RT04S Workshop (2004)

    Google Scholar 

  22. Woodland, P.C., Gales, M.J.F., Pye, D., Young, S.J.: Broadcast News Transcription using HTK. In: Proc. ICASSP 1997, Munich, pp. 719–722 (1997)

    Google Scholar 

  23. Wrigley, S., Brown, G., Wan, V., Renals, S.: Speech and crosstalk detection in multichannel audio. IEEE Trans. Speech & Audio Proc. 13(1), 84–91 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hain, T. et al. (2006). The 2005 AMI System for the Transcription of Speech in Meetings. In: Renals, S., Bengio, S. (eds) Machine Learning for Multimodal Interaction. MLMI 2005. Lecture Notes in Computer Science, vol 3869. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11677482_38

Download citation

  • DOI: https://doi.org/10.1007/11677482_38

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-32549-9

  • Online ISBN: 978-3-540-32550-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics