Abstract
In this paper we describe the 2005 AMI system for the transcription of speech in meetings used in the 2005 NIST RT evaluations. The system was designed for participation in the speech to text part of the evaluations, in particular for transcription of speech recorded with multiple distant microphones and independent headset microphones. System performance was tested on both conference room and lecture style meetings. Although input sources are processed using different front-ends, the recognition process is based on a unified system architecture. The system operates in multiple passes and makes use of state of the art technologies such as discriminative training, vocal tract length normalisation, heteroscedastic linear discriminant analysis, speaker adaptation with maximum likelihood linear regression and minimum word error rate decoding. In this paper we describe the system performance on the official development and test sets for the NIST RT05s evaluations. The system was jointly developed in less than 10 months by a multi-site team and was shown to achieve competitive performance.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bulyko, I., Ostendorf, M., Stolcke, A.: Getting More Mileage from Web Text Sources for Conversational Speech Language Modeling using Class-Dependent Mixtures. In: Proc. HLT 2003 (2003)
Burger, S., MacLaren, V., Yu, H.: The ISL Meeting Corpus: The Impact of Meeting Type on Speech Style. In: Proc. ICSLP 2002 (2002)
Carletta, J., Ashby, S., Bourban, S., Guillemot, M., Kronenthal, M., Lathoud, G., Lincoln, M., McCowan, I., Hain, T., Kraaij, W., Post, W., Kadlec, J., Wellner, P., Flynn, M., Reidsma, D.: The AMI Meeting Corpus. In: Renals, S., Bengio, S. (eds.) MLMI 2005. LNCS, vol. 3869, pp. 28–39. Springer, Heidelberg (2006)
Cox, H., Zeskind, R., Kooij, I.: Practical supergain. IEEE Trans. ASSP 34(3), 393–397 (1986)
Cox, H., Zeskind, R., Owen, M.: Robust adaptive beamforming. IEEE Trans. ASSP 35(10), 1365–1376 (1987)
Fitt, S.: Documentation and user guide to UNISYN lexicon and post-lexical rules, Tech. Rep., Centre for Speech Technology Research, Edinburgh (2000)
Gales, M.J.F., Woodland, P.C.: Mean and Variance Adaptation within the MLLR Framework. Computer Speech & Language 10, 249–264 (1996)
Garafolo, J.S., Laprun, C.D., Michel, M., Stanford, V.M., Tabassi, E.: Proc. 4th Intl. Conf. on Language Resources and Evaluation (LREC 2004) (2004)
Gauvain, J.L., Lee, C.: MAP estimation for multivariate Gaussian mixture observation of Markov Chains. IEEE Tr. Speech & Audio Processing 2, 291–298 (1994)
Hain, T., Burget, L., Dines, J., McCowan, I., Garau, G., Karafiat, M., Lincoln, M., Moore, D., Wan, V., Ordelman, R., Renals, S.: The Development of the AMI System for the Transcription of Speech in Meetings. In: Proc. MLMI 2005, Edinburgh (2005)
Hain, T.: Implicit modelling of pronunciation variation in automatic speech recognition. Speech Communication 46(2), 171–188 (2005)
Janin, A., Baron, D., Edwards, J., Ellis, D., Gelbart, D., Morgan, N., Peskin, B., Pfau, T., Shriberg, E., Stolcke, A., Wooters, C.: The ICSI Meeting Corpus. In: Proc. ICASSP 2003, Hong Kong (2003)
Knapp, C.H., Carter, G.C.: The generalized correlation method for estimation of time delay/ IEEE Transactions on Acoustics. Speech and Signal Processing, Trans. ASSP 24, 320–327 (1976)
Kumar, N.: Investigation of Silicon-Auditory Models and Generalization of Linear Discriminant Analysis for Improved Speech Recognition. PhD thesis, John Hopkins University, Baltimore (1997)
Burget, L.: Combination of Speech Features Using Smoothed Heteroscedastic Linear Discriminant Analysis. In: Proc. ICSLP 2004, Jeju Island, Korea, pp. 4–7 (2004)
Mangu, L., Brill, E., Stolcke, A.: Finding Consensus Among Words: Lattice-Based Word Error Minimization. In: Proc. Eurospeech 1999, Budapest, pp. 495–498 (1999)
Messerschmitt, D., Hedberg, D., Cole, C., Haoui, A., Winship, P.: Digital voice echo canceller with a TMS32020. Appl. Rep. SPRA129, Texas Instruments (1989)
Spring 2004 (RT04S) Rich Transcription Meeting Recognition Evaluation Plan. NIST, US, Available at: http://www.nist.gov/speech
Pfau, T., Ellis, D.P.W.: Hidden Markov model based speech activity detection for the ICSI meeting project. In: Eurospeech 2001 (2001)
Povey, D., Woodland, P.C.: Minimum Phone Error and I-Smoothing for Improved Discriminative Training. In: Proc. ICASSP 2002, Orlando (2002)
Stolcke, A., Wooters, C., Mirghafori, N., Pirinen, T., Bulyko, I., Gelbart, D., Graciarena, M., Otterson, S., Peskin, B., Ostendorf, M.: Progress in Meeting Recognition: The ICSI-SRI-UW Spring 2004 Evaluation System. In: Proc. NIST RT04S Workshop (2004)
Woodland, P.C., Gales, M.J.F., Pye, D., Young, S.J.: Broadcast News Transcription using HTK. In: Proc. ICASSP 1997, Munich, pp. 719–722 (1997)
Wrigley, S., Brown, G., Wan, V., Renals, S.: Speech and crosstalk detection in multichannel audio. IEEE Trans. Speech & Audio Proc. 13(1), 84–91 (2005)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Hain, T. et al. (2006). The 2005 AMI System for the Transcription of Speech in Meetings. In: Renals, S., Bengio, S. (eds) Machine Learning for Multimodal Interaction. MLMI 2005. Lecture Notes in Computer Science, vol 3869. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11677482_38
Download citation
DOI: https://doi.org/10.1007/11677482_38
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-32549-9
Online ISBN: 978-3-540-32550-5
eBook Packages: Computer ScienceComputer Science (R0)