[go: up one dir, main page]

Skip to main content

Quantum Period Reconstruction of Binary Sequences

  • Conference paper
Applied Algebra, Algebraic Algorithms and Error-Correcting Codes (AAECC 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3857))

  • 1030 Accesses

Abstract

We consider the problem of determining the period of a binary sequence. For sequences with small autocorrelation we prove the existence of a polynomial time quantum algorithm for the above problem based on an algorithm of Hales and Hallgren. We apply this result to several concrete examples for which the autocorrelation can be estimated using known bounds on character sums.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Brandstätter, N., Winterhof, A.: Some notes on the two-prime generator of order 2. IEEE Trans. Inform. Theory 51, 3654–3657 (2005)

    Article  MathSciNet  Google Scholar 

  2. van Dam, W., Hallgren, S., Ip, L.: Quantum algorithms for some hidden shift problems. In: Proc. of the 14th Annual ACM-SIAM Symposium on Discrete Algorithms, Baltimore, pp. 489–498. ACM, New York (2003)

    Google Scholar 

  3. Ding, C.: Autocorrelation values of generalized cyclotomic sequences of order two. IEEE Trans. Inform. Theory 44, 1699–1702 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  4. Hales, L., Hallgren, S.: An improved quantum Fourier transform algorithm and applications. In: Proc. 41st IEEE Symp. on Found. of Comp. Sci., pp. 515–525 (2000)

    Google Scholar 

  5. Kohel, D.R., Shparlinski, I.E.: Exponential sums and group generators for elliptic curves over finite fields. In: Bosma, W. (ed.) ANTS 2000. LNCS, vol. 1838, pp. 395–404. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  6. Lidl, R., Niederreiter, H.: Finite Fields. Cambridge University Press, Cambridge (1997)

    Google Scholar 

  7. Meidl, W., Winterhof, A.: On the autocorrelation of cyclotomic generators. In: Mullen, G.L., Poli, A., Stichtenoth, H. (eds.) Fq7 2003. LNCS, vol. 2948, pp. 1–11. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  8. Russell, A., Shparlinski, I.E.: Classical and quantum function reconstruction via character evaluation. J. Complexity 20, 404–422 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  9. Shor, P.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comp. 26, 1484–1509 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  10. Shparlinski, I., Winterhof, A.: Quantum period reconstruction of noisy sequences. In: Proc. ERATO Conf. on Quantum Inform. Sci., Tokyo, pp. 7–8 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Piroi, F., Winterhof, A. (2006). Quantum Period Reconstruction of Binary Sequences. In: Fossorier, M.P.C., Imai, H., Lin, S., Poli, A. (eds) Applied Algebra, Algebraic Algorithms and Error-Correcting Codes. AAECC 2006. Lecture Notes in Computer Science, vol 3857. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11617983_5

Download citation

  • DOI: https://doi.org/10.1007/11617983_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-31423-3

  • Online ISBN: 978-3-540-31424-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics