[go: up one dir, main page]

Skip to main content

MOVE Processors That Self-replicate and Differentiate

  • Conference paper
Biologically Inspired Approaches to Advanced Information Technology (BioADIT 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3853))

Abstract

This article describes an implementation of a basic multi-processor system that exhibits replication and differentiation abilities on the POEtic tissue, a programmable hardware designed for bio-inspired applications [1,2]. As for a living organism, whose existence starts with only one cell that first divides, our system begins with only one totipotent processor, able to implement any of the cells required by the final organism, which can also fully replicate itself, using the functionalities of the POEtic substrate. Then, analogously to the cells in a developing organism, our just replicated totipotent processors differentiate in order to execute their specific part of the complete organism functionality. In particular, we will present a working realization using MOVE processors whose instructions define the flow of data rather than the operations to be executed [3]. It starts with one basic MOVE processor that first replicates itself three times; the four resulting processors then differentiate and connect together to implement a multi-processor modulus-60 counter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Tyrrell, A., Sanchez, E., Floreano, D., Tempesti, G., Mange, D., Moreno, J.-M., Rosenberg, J., Villa, A.: POEtic Tissue: An Integrated Architecture for Bio-Inspired Hardware. In: Tyrrell, A.M., Haddow, P.C., Torresen, J. (eds.) ICES 2003. LNCS, vol. 2606, pp. 129–140. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  2. Thoma, Y., Tempesti, G., Sanchez, E., Moreno, J.-M.: POEtic: an electronic tissue for bio-inspired cellular applications. BioSystems 76, 191–200 (2004)

    Article  Google Scholar 

  3. Tabak, D., Lipovski, G.J.: MOVE architecture in digital controllers. IEEE Transactions on Computers C-29, 180–190 (1980)

    Article  Google Scholar 

  4. Tempesti, G., Mange, D., Stauffer, A., Teuscher, C.: The BioWall: An Electronic Tissue for Prototyping Bio-Inspired Systems. In: Proceedings of the 2002 NASA/DOD Conference on Evolvable Hardware, pp. 221–230 (2002)

    Google Scholar 

  5. Mange, D., Sipper, M., Stauffer, A., Tempesti, G.: Towards Robust Integrated Circuits: The Embryonics Approach. Proceedings of the IEEE 88(4), 516–541 (2000)

    Article  Google Scholar 

  6. Mange, D., Stauffer, A., Petraglio, E., Tempesti, G.: Embryonic Machines that Divide and Differentiate. In: Ijspeert, A.J., Murata, M., Wakamiya, N. (eds.) BioADIT 2004. LNCS, vol. 3141, pp. 328–343. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  7. Tempesti, G., Mange, D., Stauffer, A.: A robust multiplexer-based FPGA inspired by biological systems. Journal of Systems Architecture 43(10), 719–733 (1997)

    Article  Google Scholar 

  8. Stauffer, A., Mange, D., Tempesti, G., Teuscher, C.: A Self-Repairing and Self-Healing Electronic Watch: The BioWatch. In: Liu, Y., Tanaka, K., Iwata, M., Higuchi, T., Yasunaga, M. (eds.) ICES 2001. LNCS, vol. 2210, pp. 112–127. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  9. Sanchez, E., Mange, D., Sipper, M., Tomassini, M., Perez-Uribe, A., Stauffer, A.: Phylogeny, Ontogeny, and Epigenesis: Three Sources of Biological Inspiration for Softening Hardware. In: Higuchi, T., Iwata, M., Weixin, L. (eds.) ICES 1996. LNCS, vol. 1259, pp. 34–54. Springer, Heidelberg (1997)

    Google Scholar 

  10. Sipper, M., Sanchez, E., Mange, D., Tomassini, M., Perez-Uribe, A.: A phylogenetic, ontogenetic, and epigenetic view of bio-inspired hardware systems. IEEE Transaction on Evolutionary Computation 1(1), 83–97 (1997)

    Article  Google Scholar 

  11. Moreno, J.-M., Sanchez, E., Cabestany, J.: An in-system routing strategy for evolvable hardware programmable platforms. In: Proceedings of the 3rd NASA/DoD Workshop on Evolvable Hardware. IEEE Computer Society Press, Los Alamitos (2001)

    Google Scholar 

  12. Lee, C.Y.: An Algorithm for Path Connections and Its Applications. IRE Transactions on Electronic Computers EC-10(3), 346–365 (1961)

    Article  Google Scholar 

  13. Corporaal, H.: Microprocessor Architectures from VLIW to TTA. John Wiley & Sons, Chichester (1998)

    Google Scholar 

  14. Corporaal, H., Mulder, H.: MOVE: A framework for high-performance processor design. In: Proceedings of the International Conference on Supercomputing, pp. 692–701 (1991)

    Google Scholar 

  15. Restrepo, H.F., Tempesti, G., Mange, D.: Implementation of a Self-replicating Universal Turing Machine. In: Alan Turing: Life and Legacy of a Great Thinker, pp. 241–269 (2004)

    Google Scholar 

  16. Restrepo, H.F.: Implementation of a Self-repairing Universal Turing Machine, Swiss Federal Institute of Technology (EPFL), PhD thesis 2457 (2001)

    Google Scholar 

  17. Ibàñez, J., Anabitarte, D., Azpeitia, I., Barrera, O., Barrutieta, A., Blanco, H., Echarte, F.: Self-inspection based reproduction in cellular automata. In: Morán, F., Merelo, J.J., Moreno, A., Chacon, P. (eds.) ECAL 1995. LNCS, vol. 929, pp. 564–576. Springer, Heidelberg (1995)

    Google Scholar 

  18. Laing, R.: Automaton models of reproduction by self-inspection. Journal of Theoretical Biology 66, 437–456 (1977)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rossier, J., Thoma, Y., Mudry, PA., Tempesti, G. (2006). MOVE Processors That Self-replicate and Differentiate. In: Ijspeert, A.J., Masuzawa, T., Kusumoto, S. (eds) Biologically Inspired Approaches to Advanced Information Technology. BioADIT 2006. Lecture Notes in Computer Science, vol 3853. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11613022_15

Download citation

  • DOI: https://doi.org/10.1007/11613022_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-31253-6

  • Online ISBN: 978-3-540-32438-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics