Abstract
In this paper, we present a new statistical projection-based face recognition method, called Bilinear Discriminant Analysis (BDA). The proposed technique effectively combines two complementary versions of Two-Dimensional-Oriented Linear Discriminant Analysis (2DoLDA), namely Column-Oriented Linear Discriminant Analysis (CoLDA) and Row-Oriented Linear Discriminant Analysis (RoLDA). BDA relies on the maximization of a generalized bilinear projection-based Fisher criterion. A series of experiments was performed on various international face image databases in order to evaluate and compare the effectiveness of BDA to RoLDA and CoLDA. The experimental results indicate that BDA outperforms RoLDA, CoLDA and 2DPCA for face recognition, while leading to a significant dimensionality reduction.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Turk, M.A., Pentland, A.D.: Eigenfaces for Recognition. Journal of Cognitive Neu-roscience 3(1), 71–86 (1991)
Belhumeur, P.N., Hespanha, J.P., Kriegman, D.J.: Eigenfaces vs Fisherfaces: Recognition Using Class Specific Linear Projection. IEEE Trans. on Pattern Analysis and Machine Intelligence, Special Issue on Face Recognition 19(7), 711–720 (1997)
Yang, J., Zhang, D., Frangi, A.F., Yang, J.Y.: Two-Dimensional PCA: A New Approach to Appearance-Based Face Representation and Recognition. IEEE Trans. on Pattern Analysis and Machine Intelligence 26(1), 131–137 (2004)
Visani, M., Garcia, C., Laurent, C.: Comparing Robustness of Two-Dimensional PCA and Eigenfaces for Face Recognition. In: Campilho, A., Kamel, M. (eds.) ICIAR 2004. LNCS, vol. 3212, pp. 717–724. Springer, Heidelberg (2004)
Visani, M., Garcia, C., Jolion, J.M.: Two-Dimensional-Oriented Linear Discriminant Analysis for Face Recognition. In: Proc. of the International Conference on Computer Vision and Graphics (ICCVG 2004); To appear in Computational Imaging and Vision series (September 2004)
Swets, D.L., Weng, J.: Using Discriminant Eigenfeatures for Image Retrieval. IEEE Trans. on Pattern Analysis and Machine Intelligence 18(8), 831–836 (1996)
Jenrich, R.I.: Stepwise Discriminant Analysis. In: Enslein, A., Ralston, A., Wilf, H.S. (eds.) Statistical Methods for Digital Computers, pp. 76–95. Wiley Interscience, New York (1977)
Hwang, B.W., Roh, M.C., Lee, S.W.: Performance Evaluation of Face Recognition Algorithms on Asian Face Database. In: IEEE International Conference on Automatic Face and Gesture Recognition, Seoul, Korea, May 2004, pp. 278–283 (2004)
Phillips, P.J., Wechsler, H., Huang, J., Rauss, P.: The FERET Database and Evaluation Procedure for Face Recognition Algorithms. Image and Vision Computing 16(5), 295–306 (1998)
Samaria, F., Harter, A.: Parameterisation of a Stochastic Model for Human Face Identification. In: Proceedings of the IEEE Workshop on Applications of Computer Vision, Sarasota, Florida (December 1994)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Visani, M., Garcia, C., Jolion, JM. (2005). Bilinear Discriminant Analysis for Face Recognition. In: Singh, S., Singh, M., Apte, C., Perner, P. (eds) Pattern Recognition and Image Analysis. ICAPR 2005. Lecture Notes in Computer Science, vol 3687. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11552499_28
Download citation
DOI: https://doi.org/10.1007/11552499_28
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-28833-6
Online ISBN: 978-3-540-31999-3
eBook Packages: Computer ScienceComputer Science (R0)