[go: up one dir, main page]

Skip to main content

Bilinear Discriminant Analysis for Face Recognition

  • Conference paper
Pattern Recognition and Image Analysis (ICAPR 2005)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 3687))

Included in the following conference series:

Abstract

In this paper, we present a new statistical projection-based face recognition method, called Bilinear Discriminant Analysis (BDA). The proposed technique effectively combines two complementary versions of Two-Dimensional-Oriented Linear Discriminant Analysis (2DoLDA), namely Column-Oriented Linear Discriminant Analysis (CoLDA) and Row-Oriented Linear Discriminant Analysis (RoLDA). BDA relies on the maximization of a generalized bilinear projection-based Fisher criterion. A series of experiments was performed on various international face image databases in order to evaluate and compare the effectiveness of BDA to RoLDA and CoLDA. The experimental results indicate that BDA outperforms RoLDA, CoLDA and 2DPCA for face recognition, while leading to a significant dimensionality reduction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Turk, M.A., Pentland, A.D.: Eigenfaces for Recognition. Journal of Cognitive Neu-roscience 3(1), 71–86 (1991)

    Article  Google Scholar 

  2. Belhumeur, P.N., Hespanha, J.P., Kriegman, D.J.: Eigenfaces vs Fisherfaces: Recognition Using Class Specific Linear Projection. IEEE Trans. on Pattern Analysis and Machine Intelligence, Special Issue on Face Recognition 19(7), 711–720 (1997)

    Article  Google Scholar 

  3. Yang, J., Zhang, D., Frangi, A.F., Yang, J.Y.: Two-Dimensional PCA: A New Approach to Appearance-Based Face Representation and Recognition. IEEE Trans. on Pattern Analysis and Machine Intelligence 26(1), 131–137 (2004)

    Article  Google Scholar 

  4. Visani, M., Garcia, C., Laurent, C.: Comparing Robustness of Two-Dimensional PCA and Eigenfaces for Face Recognition. In: Campilho, A., Kamel, M. (eds.) ICIAR 2004. LNCS, vol. 3212, pp. 717–724. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  5. Visani, M., Garcia, C., Jolion, J.M.: Two-Dimensional-Oriented Linear Discriminant Analysis for Face Recognition. In: Proc. of the International Conference on Computer Vision and Graphics (ICCVG 2004); To appear in Computational Imaging and Vision series (September 2004)

    Google Scholar 

  6. Swets, D.L., Weng, J.: Using Discriminant Eigenfeatures for Image Retrieval. IEEE Trans. on Pattern Analysis and Machine Intelligence 18(8), 831–836 (1996)

    Article  Google Scholar 

  7. Jenrich, R.I.: Stepwise Discriminant Analysis. In: Enslein, A., Ralston, A., Wilf, H.S. (eds.) Statistical Methods for Digital Computers, pp. 76–95. Wiley Interscience, New York (1977)

    Google Scholar 

  8. Hwang, B.W., Roh, M.C., Lee, S.W.: Performance Evaluation of Face Recognition Algorithms on Asian Face Database. In: IEEE International Conference on Automatic Face and Gesture Recognition, Seoul, Korea, May 2004, pp. 278–283 (2004)

    Google Scholar 

  9. Phillips, P.J., Wechsler, H., Huang, J., Rauss, P.: The FERET Database and Evaluation Procedure for Face Recognition Algorithms. Image and Vision Computing 16(5), 295–306 (1998)

    Article  Google Scholar 

  10. Samaria, F., Harter, A.: Parameterisation of a Stochastic Model for Human Face Identification. In: Proceedings of the IEEE Workshop on Applications of Computer Vision, Sarasota, Florida (December 1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Visani, M., Garcia, C., Jolion, JM. (2005). Bilinear Discriminant Analysis for Face Recognition. In: Singh, S., Singh, M., Apte, C., Perner, P. (eds) Pattern Recognition and Image Analysis. ICAPR 2005. Lecture Notes in Computer Science, vol 3687. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11552499_28

Download citation

  • DOI: https://doi.org/10.1007/11552499_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28833-6

  • Online ISBN: 978-3-540-31999-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics