[go: up one dir, main page]

Skip to main content

Intrusion Detection System Based on Multi-class SVM

  • Conference paper
Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing (RSFDGrC 2005)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3642))

Abstract

In this paper, we propose a new intrusion detection system: MMIDS (Multi-step Multi-class Intrusion Detection System), which alleviates some drawbacks associated with misuse detection and anomaly detection. The MMIDS consists of a hierarchical structure of one-class SVM, novel multi-class SVM, and incremental clustering algorithm: Fuzzy-ART. It is able to detect novel attacks, to give detail informations of attack types, to provide economic system maintenance, and to provide incremental update and extension with a system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Skoudis, E., Zeltser, L.: Malware - Fighting Malicious Code. Prentice Hall, Englewood Cliffs (2004)

    Google Scholar 

  2. Noel, S., Wijesekera, D., Youman, C.: Modern Intrusion Detection, Data Mining, and Degrees of Attack Guilt. In: Applications of Data Mining in Computer Security, pp. 1–31. Kluwer Academic Publisher, Dordrecht (2002)

    Google Scholar 

  3. Chen, W.H., Hsu, S.H., Shen, H.P.: Application of SVM and ANN for intrusion detection. Computers & Operations Research 32(10), 2617–2634 (2005)

    Article  MATH  Google Scholar 

  4. Li, K.L., Huang, H.K., Tian, S.F., Xu, W.: Improving one-class SVM for anomaly detection. International Conference on Machine Learning and Cybernetics 5, 3077–3081 (2003)

    Google Scholar 

  5. Ambwani, T.: Multi class support vector machine implementation to intrusion detection. In: Proceedings of the International Joint Conference on Neural Networks, vol. 3, pp. 2300–2305 (2003)

    Google Scholar 

  6. Hsu, C.W., Lin, C.J.: A comparison of methods for multi-class support vector machines. IEEE Transactions on Neural Networks 13, 415–425 (2002)

    Article  Google Scholar 

  7. Cristianini, N., Shawe-Taylor, J.: An introduction to support vector machines and other kernel-based learning methods, pp. 93–124. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  8. Tax, D.M.J., Duin, R.P.W.: Uniform Object Generation for Optimizing One-class Classifiers. Journal of Machine Learning Research 2(2), 155–173 (2001)

    Article  Google Scholar 

  9. Huang, J., Georgiopoulos, M., Heileman, G.L.: Fuzzy ART properties. Neural Networks 8(2), 203–213 (1995)

    Article  Google Scholar 

  10. Results of the KDD’99 Classifier Learning Contest, Available in http://www-cse.ucsd.edu/users/elkan/clresults.html

  11. Lee, W., Stolfo, S.J., Mok, K.W.: A data mining framework for building intrusion detection models. In: Proceedings of the 1999 IEEE Symposium on Security and Privacy, pp. 120–132 (1999)

    Google Scholar 

  12. Liu, Y., Chen, K., Liao, X., Zhang, W.: A Genetic Clustering Method for Intrusion Detection. Pattern Recognition 37(5), 927–942 (2004)

    Article  Google Scholar 

  13. Kayacik, H.G., Zincir-Heywood, A.N., Heywood, M.I.: On the capability of an SOM based intrusion detection system. In: Proceedings of the International Joint Conference on Neural Networks, vol. 3, pp. 1808–1813 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lee, H., Song, J., Park, D. (2005). Intrusion Detection System Based on Multi-class SVM. In: Ślęzak, D., Yao, J., Peters, J.F., Ziarko, W., Hu, X. (eds) Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing. RSFDGrC 2005. Lecture Notes in Computer Science(), vol 3642. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11548706_54

Download citation

  • DOI: https://doi.org/10.1007/11548706_54

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28660-8

  • Online ISBN: 978-3-540-31824-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics