Abstract
In this paper, we propose a new intrusion detection system: MMIDS (Multi-step Multi-class Intrusion Detection System), which alleviates some drawbacks associated with misuse detection and anomaly detection. The MMIDS consists of a hierarchical structure of one-class SVM, novel multi-class SVM, and incremental clustering algorithm: Fuzzy-ART. It is able to detect novel attacks, to give detail informations of attack types, to provide economic system maintenance, and to provide incremental update and extension with a system.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Skoudis, E., Zeltser, L.: Malware - Fighting Malicious Code. Prentice Hall, Englewood Cliffs (2004)
Noel, S., Wijesekera, D., Youman, C.: Modern Intrusion Detection, Data Mining, and Degrees of Attack Guilt. In: Applications of Data Mining in Computer Security, pp. 1–31. Kluwer Academic Publisher, Dordrecht (2002)
Chen, W.H., Hsu, S.H., Shen, H.P.: Application of SVM and ANN for intrusion detection. Computers & Operations Research 32(10), 2617–2634 (2005)
Li, K.L., Huang, H.K., Tian, S.F., Xu, W.: Improving one-class SVM for anomaly detection. International Conference on Machine Learning and Cybernetics 5, 3077–3081 (2003)
Ambwani, T.: Multi class support vector machine implementation to intrusion detection. In: Proceedings of the International Joint Conference on Neural Networks, vol. 3, pp. 2300–2305 (2003)
Hsu, C.W., Lin, C.J.: A comparison of methods for multi-class support vector machines. IEEE Transactions on Neural Networks 13, 415–425 (2002)
Cristianini, N., Shawe-Taylor, J.: An introduction to support vector machines and other kernel-based learning methods, pp. 93–124. Cambridge University Press, Cambridge (2000)
Tax, D.M.J., Duin, R.P.W.: Uniform Object Generation for Optimizing One-class Classifiers. Journal of Machine Learning Research 2(2), 155–173 (2001)
Huang, J., Georgiopoulos, M., Heileman, G.L.: Fuzzy ART properties. Neural Networks 8(2), 203–213 (1995)
Results of the KDD’99 Classifier Learning Contest, Available in http://www-cse.ucsd.edu/users/elkan/clresults.html
Lee, W., Stolfo, S.J., Mok, K.W.: A data mining framework for building intrusion detection models. In: Proceedings of the 1999 IEEE Symposium on Security and Privacy, pp. 120–132 (1999)
Liu, Y., Chen, K., Liao, X., Zhang, W.: A Genetic Clustering Method for Intrusion Detection. Pattern Recognition 37(5), 927–942 (2004)
Kayacik, H.G., Zincir-Heywood, A.N., Heywood, M.I.: On the capability of an SOM based intrusion detection system. In: Proceedings of the International Joint Conference on Neural Networks, vol. 3, pp. 1808–1813 (2003)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Lee, H., Song, J., Park, D. (2005). Intrusion Detection System Based on Multi-class SVM. In: Ślęzak, D., Yao, J., Peters, J.F., Ziarko, W., Hu, X. (eds) Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing. RSFDGrC 2005. Lecture Notes in Computer Science(), vol 3642. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11548706_54
Download citation
DOI: https://doi.org/10.1007/11548706_54
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-28660-8
Online ISBN: 978-3-540-31824-8
eBook Packages: Computer ScienceComputer Science (R0)