[go: up one dir, main page]

Skip to main content

Ad Hoc Star Join Query Processing in Cluster Architectures

  • Conference paper
Data Warehousing and Knowledge Discovery (DaWaK 2005)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 3589))

Included in the following conference series:

Abstract

Processing of large amounts of data in data warehouses is increasingly being done in cluster architectures to achieve scalability. In this paper we look into the problem of ad hoc star join query processing in clusters architectures. We propose a new technique, the Star Hash Join (SHJ), which exploits a combination of multiple bit filter strategies in such architectures. SHJ is a generalization of the Pushed Down Bit Filters for clusters. The objectives of the technique are to reduce (i) the amount of data communicated, (ii) the amount of data spilled to disk during the execution of intermediate joins in the query plan, and (iii) amount of memory used by auxiliary data structures such as bit filters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Top500 Supercomputer Sites, http://www.top500.org

  2. Transaction processing and database benchmarks, http://www.tpc.org

  3. Aguilar-Saborit, J., Muntes-Mulero, V., Larriba-Pey, J.-L.: Pushing down bit filters in the pipelined execution of large queries. In: Kosch, H., Böszörményi, L., Hellwagner, H. (eds.) Euro-Par 2003. LNCS, vol. 2790, pp. 328–337. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  4. Aguilar-Saborit, J., Muntes-Mulero, V., Larriba-Pey, J.-L., Zuzarte, C.: Ad-hoc star hash join processing in clusters of smp. Technical Report. Universitat Politecnica de Catalunya UPC-DAC-RR-GEN-2005-4

    Google Scholar 

  5. Aguilar-Saborit, J., Muntes-Mulero, V., Larriba-Pey, J.-L., Zuzarte, C., Pereyra, H.: On the use of bit filters in shared nothing partitioned systems. To appear in IWIA 2005 (2005)

    Google Scholar 

  6. Bernstein, P.A., Chiu, D.M.: Using semijoins to solve relational queries. J. ACM 28(1), 25–40 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bernstein, P.A., Goodman, N.: The power of natural joins. SIAM J. Computi. 10, 751–771 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  8. Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Communications of the ACM 13(7), 422–426 (1970)

    Article  MATH  Google Scholar 

  9. Chan, C.-Y., Ioannidis, Y.E.: Bitmap index design and evaluation. In: Proc. of the SIGMOD Conf. on the Management of Data, pp. 355–366 (1998)

    Google Scholar 

  10. Chaudhuri, S., Dayal, U.: Data warehousing and olap for decision support (turorial). In: SIGMOD Conference 1997, pp. 507–508 (1997)

    Google Scholar 

  11. Chaudhuri, S., Dayal, U.: An overview of data warehousing and olap technology. In: SIGMOD, vol. 26, pp. 65–74 (1997)

    Google Scholar 

  12. Deshpande, P., Ramasamy, K., Shuckla, A., Naughton, J.F.: Caching multidimensional queries using chunks. In: SIGMOD Conference, pp. 259–270 (1998)

    Google Scholar 

  13. DeWitt, D.J., Katz, R., Olken, F., Shapiro, L., Stonebreaker, M., Wood, D.: Implementation Techniques for Main Memory Database Systems. In: Proceedings of the SIGMOD Int’l. Conf. on the Management of Data, pp. 1–8. ACM, New York (1984)

    Google Scholar 

  14. Markl, V., Ramsak, F., Bayer, R.: Improving olap performance by multidimensional hierarchical clustering. In: Proc. of the Intl. Database Enfineering and Applications Symposium, pp. 165–177 (1999)

    Google Scholar 

  15. Mehta, M., DeWitt, D.J.: Parallel database systems: The future of high performance database processing. In: Proceedings of the 21st VLDB Conference (1995)

    Google Scholar 

  16. O’Neil, P., Graefe, G.: Multi-Table Joins Through Bitmapped Join Indices. SIGMOD Record 24(3), 8–11 (1995)

    Article  Google Scholar 

  17. O’Neil, P., Quass, D.: Improved query performance with variant indexes. In: Proc. ACM SIGMOD Int. Conf. on Management of Data, pp. 38–49 (1997)

    Google Scholar 

  18. Roussopoulos, R.: Materialized Views and Data Warehouses. SIGMOD Record 27(1), 21–26 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Aguilar-Saborit, J., Muntés-Mulero, V., Zuzarte, C., Larriba-Pey, JL. (2005). Ad Hoc Star Join Query Processing in Cluster Architectures. In: Tjoa, A.M., Trujillo, J. (eds) Data Warehousing and Knowledge Discovery. DaWaK 2005. Lecture Notes in Computer Science, vol 3589. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11546849_20

Download citation

  • DOI: https://doi.org/10.1007/11546849_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28558-8

  • Online ISBN: 978-3-540-31732-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics