[go: up one dir, main page]

Skip to main content

Universal Approach to Study Delayed Dynamical Systems

  • Conference paper
Advances in Natural Computation (ICNC 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3610))

Included in the following conference series:

Abstract

In this paper, we propose a universal approach to study dynamical behaviors of various neural networks with time-varying delays. A universal model is proposed, which includes most of the existing models as special cases. An effective approach, which was first proposed in [1] , to investigate global stability is given, too. It is pointed out that the approach proposed in the paper [1] applies to the systems with time-varying delays, too.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Chen, T.: Global Exponential Stability of Delayed Hopfield Neural Networks. Neural Networks 14(8), 977–980 (2001)

    Article  Google Scholar 

  2. Liao, X., Wang, J.: Algebraic Criteria for Global Exponential Stability of Cellular Neural Networks With multiple Time Delays. IEEE Tran. on Circuits and Systems-I 50(2), 268–275 (2003)

    Article  MathSciNet  Google Scholar 

  3. Lu, H., Chung, F.-L., He, Z.: Some sufficient conditions for global exponential stability of delayed Hopfield neural networks. Neural Networks 17, 537–544 (2004)

    Article  MATH  Google Scholar 

  4. Zeng, Z., Wang, J., Liao, X.: Global Exponential Stability of a General Class of Recurrent Neural Networks With Time-Varying Delays. IEEE Tran. on Circuits and Systems-I 50(10), 1353–1358 (2003)

    Article  MathSciNet  Google Scholar 

  5. Zhang, J.: Globally Exponential Stability of Neural Networks With varying Delays. IEEE Tran. on Circuits and Systems-I 50(2), 288–291 (2003)

    Article  Google Scholar 

  6. Yi, Z.: Global exponential convergence of recurrent neural networks with variable delays. Theor. Comput. Sci. 312, 281–293 (2004)

    Article  MATH  Google Scholar 

  7. Huang, H., Ho, D.W.C., Cao, J.: Analysis of global exponential stability and periodic solutions of neural networks with time-varying delays. Neural Networks 18(2), 161–170 (2005)

    Article  Google Scholar 

  8. Huang, H., Cao, J.: On global symptotic stability of recurrent neural networks with time-varying delays. Applied Mathematics and Computation 142, 143–154 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  9. Cao, J., Wang, J.: Global Asymptotic Stability of a General Class of Recurrent Neural Networks With Time-Varying Delays. IEEE Tran. on Circuits and Systems-I 50(1), 34–44 (2003)

    Article  MathSciNet  Google Scholar 

  10. Cao, J., Wang, J.: Absolute exponential stability of recurrent neural networks with Lipschitz-continuous activation functions and time delays. Neural Networks 17, 379–390 (2004)

    Article  MATH  Google Scholar 

  11. Peng, J., Qiao, H., Xu, Z.-b.: A new approach to stability of neural networks with time-varying delays. Neural Networks 15, 95–103 (2002)

    Article  Google Scholar 

  12. Chen, T., Lu, W., Chen, G.: Dynamical Behaviors of a Large Class of General Delayed Neural Networks. Neural Computation 17(4), 949–968 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  13. Hu, S., Liu, D.: On the global output convergence of a class of recurrent neural networks with time-varying inputs. Neural Networks 18(2), 171–178 (2005)

    Article  MATH  Google Scholar 

  14. Gopalsamy, K., He, X.: Stability in Asymmetric Hopfield Nets with Transmission Delays. Phys. D. 76, 344–358 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  15. Zhao, H.: Global stability of neural networks with distributed delays. Physical Review E 68, 051909 (2003)

    Article  Google Scholar 

  16. Zhang, Q., Wei, X., Xu, J.: Global exponential stability of Hopfield neural networks with continuous distributed delays. Physics Letters A 315, 431–436 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  17. Zhao, H.: Global asymptotic stability of Hopfield neural network involving distributed delays. Neural Networks 17, 47–53 (2004)

    Article  MATH  Google Scholar 

  18. Jiang, H., Teng, Z.: Global exponential stability of cellular neural networks with time-varying coefficients and delays. Neural Networks 17, 1415–1425 (2004)

    Article  MATH  Google Scholar 

  19. Zhang, J.: Absolutely exponential stability of a class of neural networks with unbounded delay. Neural Networks 17, 391–397 (2004)

    Article  MATH  Google Scholar 

  20. Zheng, Y., Chen, T.: Global exponential stability of delayed periodic dynamical systems. Physics Letters A 322(5-6), 344–355 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  21. Lu, W., Chen, T.: On Periodic Dynamical Systems. Chinese Annals of Mathematics Series B 25B(4), 455–462 (2004)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chen, T. (2005). Universal Approach to Study Delayed Dynamical Systems. In: Wang, L., Chen, K., Ong, Y.S. (eds) Advances in Natural Computation. ICNC 2005. Lecture Notes in Computer Science, vol 3610. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11539087_30

Download citation

  • DOI: https://doi.org/10.1007/11539087_30

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28323-2

  • Online ISBN: 978-3-540-31853-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics