[go: up one dir, main page]

Skip to main content

The CoRe Calculus

  • Conference paper
Automated Deduction – CADE-20 (CADE 2005)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3632))

Included in the following conference series:

Abstract

We present the CoRe calculus for contextual reasoning which supports reasoning directly at the assertion level, where proof steps are justified in terms of applications of definitions, lemmas, theorems, or hypotheses (collectively called “assertions”) and which is an established basis to generate proof presentations in natural language. The calculus comprises a uniform notion of a logical context of subformulas as well as replacement rules available in a logical context. Replacement rules operationalize assertion level proof steps and technically are generalized resolution and paramodulation rules, which in turn should suit the implementation of automatic reasoning procedures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Andreoli, J.-M.: Focusing and proof construction. Annals of Pure and Applied Logic 107(1), 131–163 (2000)

    Article  MathSciNet  Google Scholar 

  2. Andrews, P.B.: General models, descriptions, and choice in type theory. The Journal of Symbolic Logic 37(2), 385–397 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  3. Autexier, S.: Hierarchical Contextual Reasoning. PhD thesis, Computer Science Department, Saarland University, Saarbrücken, Germany (2003)

    Google Scholar 

  4. Barendregt, H.: The λ-Calculus - Its Syntax and Semantics. North-Holland, Amsterdam (1984)

    Google Scholar 

  5. Benzmüller, C., Brown, C.E., Kohlhase, M.: Semantic Techniques for Higher-Order Cut-Elimination. SEKI Tech. Report SR-2004-07, Saarland University (2004)

    Google Scholar 

  6. Brünnler, K.: Deep Inference and Symmetry in Classical Proofs. Logos (2004)

    Google Scholar 

  7. Bundy, A.: The use of explicit plans to guide inductive proofs. DAI Research Report 349, Department of Artificial Intelligence, University of Edinburgh (1987)

    Google Scholar 

  8. Dowek, G., Hardin, T., Kirchner, C.: Theorem proving modulo. Rapport de Recherche 3400, INRIA (April 1998)

    Google Scholar 

  9. Fitting, M.: Tableau methods of proof for modal logics. Notre Dame Journal of Formal Logic, XIII, 237–247 (1972)

    Google Scholar 

  10. Ganzinger, H., Stuber, J.: Superposition with equivalence reasoning and delayed clause normal form transformation. In: Baader, F. (ed.) CADE 2003. LNCS (LNAI), vol. 2741, pp. 335–349. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  11. Gordon, M.J., Milner, A.J., Wadsworth, C.P.: Edinburgh LCF – A mechanised logic of computation. LNCS, vol. 78. Springer, Heidelberg (1979)

    Google Scholar 

  12. Henkin, L.: Completeness in the theory of types. The Journal of Symbolic Logic 15, 81–91 (1950)

    Article  MATH  MathSciNet  Google Scholar 

  13. Huang, X.: Human Oriented Proof Presentation: A Reconstructive Approach. In: Augustin, S. (ed.) DISKI. Infix, Germany, vol. 112 (1996)

    Google Scholar 

  14. Murray, N.V., Rosenthal, E.: Inference with path resolution and semantic graphs. Journal of the Association of Computing Machinery 34(2), 225–254 (1987)

    MATH  MathSciNet  Google Scholar 

  15. Pfenning, F.: Proof Transformation in Higher-Order Logic. Phd thesis, Carnegie Mellon University (1987)

    Google Scholar 

  16. Schütte, K.: Proof Theory (Originaltitel: Beweistheorie). In: Die Grundlehren der mathematischen Wissenschaften, vol. 255, Springer, Heidelberg (1977)

    Google Scholar 

  17. Smullyan, R.M.: First-Order Logic. In: Ergebnisse der Mathematik, vol. 43, Springer, Berlin (1968)

    Google Scholar 

  18. Wallen, L.: Automated proof search in non-classical logics: efficient matrix proof methods for modal and intuitionistic logics. series in AI. MIT Press, Cambridge (1990)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Autexier, S. (2005). The CoRe Calculus. In: Nieuwenhuis, R. (eds) Automated Deduction – CADE-20. CADE 2005. Lecture Notes in Computer Science(), vol 3632. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11532231_7

Download citation

  • DOI: https://doi.org/10.1007/11532231_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28005-7

  • Online ISBN: 978-3-540-31864-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics